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SPLIT SPETSES FOR PRIMITIVE REFLECTION
GROUPS

Michel Broué, Gunter Malle, Jean Michel

Abstract. — Let W be an exceptional spetsial irreducible reflection group acting
on a complex vector space V| i.e., a group G, for

n € {4,6,8,14,23,24, 25,26, 27,28, 29, 30, 32, 33, 34, 35, 36, 37}

in the Shephard-Todd notation. We describe how to determine some data associated
to the corresponding (split) “spets” G = (V, W), given complete knowledge of the
same data for all proper subspetses (the method is thus inductive).

The data determined here are the set Uch(G) of “unipotent characters” of G and its
repartition into families, as well as the associated set of Frobenius eigenvalues. The
determination of the Fourier matrices linking unipotent characters and “unipotent
character sheaves” will be given in another paper.

The approach works for all split reflection cosets for primitive irreducible reflection
groups. The result is that all the above data exist and are unique (note that the
cuspidal unipotent degrees are only determined up to sign).

We keep track of the complete list of axioms used. In order to do that, we explain
in detail some general axioms of “spetses”, generalizing (and sometimes correcting)
[BMMO99] along the way.

Note that to make the induction work, we must consider a class of reflection cosets
slightly more general than the split irreducibles ones: the reflection cosets with split
semi-simple part, i.e., cosets (V, W) such that V = V; @ V5 with W < GL(V;) and
©ly; = Id. We need also to consider some non-exceptional cosets, those associated
to imprimitive complex reflection groups which appear as parabolic subgroups of the
exceptional ones.



Résumé (Spetses déployés pour les groupes de réflexion primitifs)
Soit W un groupe de réflexions spetsial exceptionnel agissant sur un espace vectoriel
complexe V, i.e., un groupe G,, (dans la notation de Shephard-Todd) pour

n € {4,6,8,14,23,24,25, 26,27, 28,29, 30, 32, 33, 34, 35, 36, 37} .

Nous décrivons comment calculer des données attachées au “spets” G = (V,W)
déployé correspondant, si nous connaissons les mémes données pour tous les sous-
spetses propres (la méthode est donc récursive).

Les donnes déterminées ici sont I’ensemble Uch(G) des “caracteéres unipotents” de
G et sa répartition en familles, ainsi que ’ensemble des valeurs propres de Frobenius
associées. La détermination des matrices de Fourier reliant les caracteres unipotents
aux “faisceaux caracteéres unipotents” sera donnée dans un prochain article.

Cette approche s’applique aussi bien a toutes les données de réflexions primitives
irréductibles “presque tordues”. Notre principal résultat est que les données men-
tionnées ci-dessus existent et sont uniques (noter que les degrés unipotents cuspidaux
ne sont déterminés qu’au signe pres).

Nous précisons la liste complete des axiomes utilisés. Dans ce but, nous exposons
en détail quelques-uns des axiomes généraux des “spetses”’, généralisant (et parfois
corrigeant) ainsi [BMM99].

Il est & noter que, pour appliquer la méthode inductive, nous devons considérer une
classe de données de réflexions plus générale que les données déployées irréductibles :
celles dont la partie semi-simple est déployée, i.e., les données (V, W) telles que
V =Vi® Vy avec W C GL(V4) et ¢|y, = Id. Nous devons également considérer
quelques données de réflexions non-exceptionnelles qui apparaissent comme sous-
données paraboliques de données exceptionnelles.
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FROM WEYL GROUPS TO COMPLEX REFLECTION
GROUPS

Let G be a connected reductive algebraic group over an algebraic closure of a finite
field F, and F : G — G an isogeny such that F° (where d is a natural integer) defines
an F s-rational structure on G. The group of fixed points G := G! is a finite group
of Lie type, also called finite reductive group. Lusztig has given a classification of the
irreducible complex characters of such groups. In particular he has constructed the
important subset Un(G) of unipotent characters of G. In a certain sense, which is
made precise by Lusztig’s Jordan decomposition of characters, the unipotent charac-
ters of G and of various Levi subgroups of G determine all irreducible characters of
G.

The unipotent characters are constructed as constituents of representations of G
on certain f-adic cohomology groups, on which F also acts. Lusztig shows that for
a given unipotent character v € Un(G), there exists a root of unity or a root of unity
times the square root of ¢°, that we denote Fr(y), such that the eigenvalue of F?°
on any ~y-isotypic part of such ¢-adic cohomology groups is given by Fr(v) times an
integral power of ¢°.

The unipotent characters are naturally partitioned into so-called Harish-Chandra
series, as follows. If L is an F-stable Levi subgroup of some F-stable parabolic
subgroup P of G, then Harish-Chandra induction

R¢ := nd$ o Infly : ZIrr(L) — ZIrr(G)

where L := L and P := P defines a homomorphism of character groups indepen-
dent of the choice of P. A unipotent character of G is called cuspidal if it does not
occur in RY () for any proper Levi subgroup L < G and any A € Un(L). The set of
constituents
Un(G, (L, A) == {y € Un(G) | (, R (\)) # 0}

where A € Un(L) is cuspidal, is called the Harish-Chandra series above (L, \). It
can be shown that the Harish-Chandra series form a partition of Un(G), if (L, \)
runs over a system of representatives of the G-conjugacy classes of such pairs. Thus,
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given v € Un(G) there is a unique pair (L, A) up to conjugation such that L is a
Levi subgroup of G, A € Un(L) is cuspidal and 7 occurs as a constituent in Rf()\).
Furthermore, if v € Un(G, (L, A)) then Fr(y) = Fr(\).

Now let W (L, A) := Ng(L, \)/L, the relative Weyl group of (L, \). This is always
a finite Coxeter group. Then Endcg (R$ ())) is an Iwahori-Hecke algebra H(Wa (L, M)
for W (L, \) for a suitable choice of parameters. This gives a natural parametrization
of Un(G, (L, \)) by characters of H(Wg (L, \)), and thus, after a choice of a suitable
specialization for the corresponding generic Hecke algebra, a parametrization

Ir(Wa(L,\)) — Un(G, (L, \)), X+ Yy,

of the Harish-Chandra series above (L, \) by Irr(W¢ (L, A)). In particular, the char-
acters in the principal series Un(G, (T, 1)), where T' denotes a maximally split torus,
are indexed by Irr(WF), the irreducible characters of the F-fixed points of the Weyl
group W.

More generally, if d > 1 is an integer and if T is an F-stable subtorus of G such
that

— T splits completely over Fa
— but no subtorus of T splits over any smaller field,

then its centralizer L := Cg(T) is an F-stable d-split Levi subgroup (not necessarily
lying in an F-stable parabolic subgroup). We assume here and in the rest of the
introduction that F' is a Frobenius endomorphism to simplify the exposition; for the
“very twisted” Ree and Suzuki groups one has to replace d by a cyclotomic polynomial
over an extension of the rationals as is done in 1.48.

Here, again using ¢-adic cohomology of suitable varieties Lusztig induction defines
a linear map

RS : ZIrr(L) — ZIrr(G),

where again L := L. As before we say that v € Un(G) is d-cuspidal if it does not
occur in RF()\) for any proper d-split Levi subgroup L < G and any A € Un(L),
and we write Un(G, (L, \)) for the set of constituents of R¥()\), when A € Un(L)
is d-cuspidal. By [BMM93, 3.2(1)] these d-Harish-Chandra series, for any fixed d,
again form a partition of Un(G). The relative Weyl groups We (L, \) := Ng(L, \)/L
are now in general complex reflection groups. It is shown (see [BMM93, 3.2(2)]) that
again there exists a parametrization of Un(G, (L, A)) by the irreducible characters of
some cyclotomic Hecke algebra H(Wq (L, A)) of Wg (L, A) and hence, after a choice
of a suitable specialization for the corresponding generic Hecke algebra, a parame-
trization

Ir(We(L, A)) — Un(G, (L, \)), X+ Yy,

of the d-Harish-Chandra series above (L, ) by Irr(Wg(L,A)). Furthermore, there
exist signs €, such that the degrees of characters belonging to Un(G, (L, X)) are given



FROM WEYL GROUPS TO COMPLEX REFLECTION GROUPS 3

by

(1) = ex A(1)/ Sy,
where S, denotes the Schur element of x with respect to the canonical trace form on
H(We(L, X)) (see [Mal00, §7] for references).

Attached to (G, F) is the set Ucsh(G) of characteristic functions of F-stable unipo-
tent character sheaves of G. Lusztig showed that these are linearly independent and
span the same subspace of CIrr(G) as Un(G). The base change matrix S from Un(G)
to Ucsh(G) is called the Fourier matrix of G. Define an equivalence relation on Un(G)
as the transitive closure of the following relation:

v~ <= there exists A € Ucsh(G) with (7, A) # 0 # (7, A).

The equivalence classes of this relation partition Un(G) (and also Ucsh(G)) into so-
called families. Lusztig shows that the intersection of any family with the principal
series Un(G, (T, 1)), is a two-sided cell in Irr(W!) (after identification of Irr(W)
with the principal series Un(G, (T, 1)) as above).

All of the above data are generic in the following sense. Let G denote the complete
root datum of (G, F), that is, the root datum of G together with the action of ¢=1F
on it. Then there is a set Uch(G), together with maps

Deg : Uch(G) — Q[z], v +— Deg(v),
A : Uch(G) — C*[z'/?], v — Fr(v),

such that for all groups (G’, F’) with the same complete root datum G (where F’ J
defines a Fs-rational structure) there are bijections 1¢s : Uch(G) — Un(G’F/)
satisfying

bar(7)(1) = Deg(7)(¢') and  Fr(var (7)) = Fr(7)(¢"°).
Furthermore, by results of Lusztig and Shoji, Lusztig induction R$ of unipotent
characters is generic, that is, for any complete Levi root subdatum L of G with
corresponding Levi subgroup L of G there is a linear map

RY : ZUch(LL) — ZUch(G)
satisfying
RY oy, =Yg o RY
(see [BMM93, 1.33]).

The following has been observed on the data: for W irreducible and any scalar
& € Z(W) there is a permutation with signs E¢ of Uch(G) such that

Deg(Eg(7))(x) = Deg(7)(§'x).

We call this the Ennola-transform, by analogy with what Ennola first observed on
the relation between characters of general linear and unitary groups. In the case
considered here, Z(W) has order at most 2. Such a permutation E¢ turns out to be
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of order the square of the order of £ if W is of type E7 or Eg, and of the same order
as & otherwise.

Thus, to any pair consisting of a finite Weyl group W and the automorphism
induced by F on its reflection representation, is associated a complete root datum G,
and to this is associated a set Uch(G) with maps Deg, Fr, E¢ (£ € Z(W)) and linear
maps RY for any Levi subdatum L satisfying a long list of properties.

Our aim is to try and treat a complex reflection group as a Weyl group of some
yet unknown object. Given W a finite subgroup generated by (pseudo)-reflections
of a finite dimensional complex vector space V, and a finite order automorphism
o of V' which normalizes W, we first define the corresponding reflection coset by
G := (V,W). Then we try to build “unipotent characters” of G, or at least to build
their degrees (polynomials in z), Frobenius eigenvalues (roots of unity times a power
(modulo 1) of z); in a coming paper we shall build their Fourier matrices.

Lusztig (see [Lus93] and [Lus94]) knew already a solution for Coxeter groups
which are not Weyl groups, except the Fourier matrix for H4 which was determined
by Malle in 1994 (see [Mal94]).

Malle gave a solution for imprimitive spetsial complex reflection groups in 1995
(see [Mal95]) and proposed (unpublished) data for many primitive spetsial groups.

Stating now a long series of precise axioms — many of a technical nature — we can
now show that there is a unique solution for all primitive spetsial complex reflection
groups, i.e., groups G, for n € {4, 6,8, 14,23, 24, 25,26, 27,28, 29, 30, 32, 33, 34, 35, 36, 37}
in the Shephard—Todd notation, and the symmetric groups.

Let us introduce our basic objects and some notation.

— A complex vector space V of dimension r, a finite reflection subgroup W of
GL(V), a finite order element ¢ € Ngpv)(W).
— A(W) := the reflecting hyperplanes arrangement of W, and for H € A(W),

o Wy := the fixator of H in W, a cyclic group of order ey,
e jy := an eigenvector for reflections fixing H.

— NP := |A(W)| the number of reflecting hyperplanes.
The action of Ngr,(vy(W) on the monomial of degree N‘}}gp
I juesv
HEAW)

defines a linear character of NGL(V)(W)7 which coincides with dety on restriction to
W, hence (by quotient with dety ) defines a character

0 : NGL(V)(W) — NGL(V)(W)/W — C*.

We set
G=(V,Wy)
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and we define the “polynomial order” of G by the formula
1
1 1
W] Lwew dety (1 — wpx)*

G| := (~1)"6(¢) 2"

€ Clz]

(where 2* denotes the complex conjugate of the complex number z).

Notice that when W is a true Weyl group and ¢ is a graph automorphism, then the
polynomial |G| is the order polynomial discovered by Steinberg for the corresponding
family of finite reductive groups.

A particular case.—

Let us quickly state our results for the cyclic group of order 3, the smallest complex
reflection group which is not a Coxeter group.

For the purposes of that short exposition, we give some ad hoc definitions of the
main notions (Hecke algebras, Schur elements, unipotent characters, &-series, etc.)
which will be given in a more general and more systematic context in the paper
below.

Let ¢ := exp(25%). We have

Vi=C, W= (), p=1,G = (CW), N =1,
G| = z(2® —1).
Generic Hecke algebra H(W, (a,b,¢)). —

For indeterminates a, b, ¢, we define an algebra over Z[ail, pEL, cil] by

H(W,(a,b,¢)) = (s | (s—a)(s =b)(s—¢)=0).

The algebra H(W, (a, b, ¢)) has three linear characters xq, X5, Xc defined by x:(s) =t
for t € {a,b,c}.

Canonical trace. —

The algebra H(W, (a, b, c)) is endowed with the symmetrizing form defined by
Z a®b’c’ forn >0,

a,B,v>0
T(Sn) — a+B+v=n
E a®bPe’ forn < 0.

o,B,7<0
a+pB+y=n
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Schur elements of H(W, (a,b,c)). —

We define three elements of Z[a™!, b*!, ¢*!] which we call Schur elements by
S, — (b—a)(c—a) 5, = (¢c—b)(a—D) 5= (a—c)(b—c)

be ca ab ’
so that
Xa Xb Xe
T=ets s,

Spetsial Hecke algebra for the principal series. —
This is the specialization of the generic Hecke algebra defined by

H(W, (2,¢,¢%) = (s | (s—2)(1 +s+s5°) =0).
Note that the specialization to the group algebra factorizes through this.
Unipotent characters. —

There are 4 unipotent characters of G, denoted po, p¢, p¢, p. Their degrees and
Frobenius eigenvalues, are given by the following table:

gl Deg(7) Fr(v)
Po 1 1
2% 1_71@3?(96 -] 1
0| pre=0 | 1
Pl :<<2x(x -1 | ¢

We set Uch(G) := {po, p¢, p¢, p} -

Families. —

Uch(G) splits into two families: {po}, {pc, ¢, p} -

Principal £-series for & taking values 1,(, (2. —

1. We define the principal é-series by
Uch(G, §) == {y | Deg(7)(£) # 0},

and we say that a character v is &-cuspidal if
|G|(z) >
———— | |a= 0.
(Deetort) e #
2. Uch(G) = Uch(G, &) U {~e} where 7¢ is &-cuspidal.
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3. Let H(W,€) := H(W, (£ 1z, (,¢?)) be the specialization of the generic Hecke
algebra at a = £ 'z ,b = (,c = (2. There is a natural bijection
Irr (H(W 5)) % UCh(G, g) ’ Xt = Vi for t = a, b7 c

such that:
(a) We have

3 —1 1
D — ()
where S¢(z) denotes the corresponding specialized Schur element.

(b) The intersections of the families with the set Uch(G, &) correspond to the
Rouquier blocks of H(W, ).

Fourier matriz. —

The Fourier matrix for the 3-element family is
2
—¢ -1
< (S
el R
-1 1 1







CHAPTER 1

REFLECTION GROUPS, BRAID GROUPS, HECKE
ALGEBRAS

The following notation will be in force throughout the paper.

We denote by N the set of nonnegative integers.

We denote by p the group of all roots of unity in C*. For n > 1, we denote by pu,,
the subgroup of n-th roots of unity, and we set (,, := exp(27i/n) € w,,.

If K is a number field, a subfield of C, we denote by Zk the ring of algebraic
integers of K. We denote by pu(K) the group of roots of unity in K, and we set
my = |pu(K)|. We denote by K the algebraic closure of K in C.

We denote by z — z* the complex conjugation on C. For a Laurent polynomial
P(z) € Clz,z7 1], we set P(z)Y := P(1/z)*.

1.1. Complex reflection groups and reflection cosets

1.1.1. Some notation. —

Let V be a finite dimensional complex vector space, and let W be a finite subgroup
of GL(V') generated by reflections (a finite complex reflection group).

We denote by A(W) (or simply by A when there is no ambiguity) the set of
reflecting hyperplanes of reflections in W. If H € A(W), we denote by ey the order
of the fixator Wy of H in W, a cyclic group consisting of 1 and all reflections around
H. Finally, we call distinguished refiection around H the reflection with reflecting
hyperplane H and non trivial eigenvalue exp(27i/ep).

An element of V is called regular if it belongs to none of the reflecting hyperplanes.
We denote by V'8 the set of regular elements, that is

vee=v - ] H.
HeA(W)
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We set
Nieb:= [{w € W | wis a reflection}| and N%}gp = |A(W)]
so that Nyt =3 e 4wy (e —1) and NP = D meamy 1. We set
(1.1) ew = Z egzNéﬁf—l—Na}yp, so that ey = ew,, .
HeA(W)

The parabolic subgroups of W are by definition the fixators of subspaces of V: for

I CV, we denote by W; the fixator of I in W. Then the map
I — W[

is an order reversing bijection from the set of intersections of elements of A(W) to
the set of parabolic subgroups of W.

1.1.2. Some linear characters. —

Let W be a reflection group on V. Let SV be the symmetric algebra of V', and let
SVW be the subalgebra of elements fixed by W.

For H € A(W), let us denote by jg € V an eigenvector for the group Wy which
does not lie in H, and let us set

Jw = H jH S SV,
HeA(W)

an element of the symmetric algebra of V' well defined up to multiplication by a
nonzero scalar, homogeneous of degree Nl},}}'p.

For w € W, we have (see e.g. [Brol0, 4.3.2]) w.Jyy = dety(w)Jy and more
generally, there is a linear character on N,y (W) extending dety |y and denoted

—~ (W
by deti/ ), defined as follows:

—~ W
v.Jw = deti, )(V)JW for all v € NGL(V)(W)-

Remark 1.2. — The character (i‘c;ti/w) is in general different from dety , as can easily
be seen by considering its values on the center of GL(V). But by what we said above
it coincides with dety on restriction to W.

It induces a linear character

det’v : NGL(V)(W)/W — C*

defined as follows: for @ € Ngpv)(W)/W with preimage ¢ € Ngp ) (W), we set

L~ §
dety, () := dety ~(p)dety (¢)* .
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Similarly, the element (of degree NI<f) of SV defined by

J‘\;[// = H j;IH_l
HeA(W)

. ~ (W)v . . . _
defines a linear character dety, on Ngpv)(W), which coincides with detv1 on
restriction to W, hence a character

— (W
det'vv : NoooyyW)/W = C* |, T detg/ )v(np)detv(gp).

The discriminant, element of degree Ng}gp + Nigk of SVW defined by
DiSCW = ij%/ == H j;H )
HeA(W)

defines a character

Ay = det@det'vv : NaLov)(W)/W — C*.

Let ¢ € Ngrv)(W) be an element of finite order. Let ¢ be a root of unity. We
recall (see [Spr74] or [BM96]) that an element wy € Wy is called (-regular if there
exists an eigenvector for wep in V*°® with eigenvalue (.

Lemma 1.3. — Assume that wy is (-regular. Then

~ (W hyp —~ W re
1. deti/ )(wgo) =MW and deti/ )v(wgo) = (MW

2. det}, (@) = CN‘}/lgpdetv(wgo)_l and det'vv(G) = CNésfdetV(wgp).
3. Aw(p) = ¢

Proof. —
Let V* be the dual of V. We denote by (-,-) the natural pairing V* x V — K,
which extends naturally to a pairing V* x SV — K “evaluation of functions on V*”.
We denote by V*™® the set of elements of V* fixed by none of the reflections of
W (acting on the right by transposition): this is the set of regular elements of V* for
the complex reflection group W acting through the contragredient representation.
Let a € V*'®® be such that cwp = («. Since « is regular, we have («, Jy) # 0.
But

(awp, Jw) = (VW (, )
(o wp(Jw)) = detly (w) (e, Juw)

—~ (W 1y p
which shows that deti/ )(wga) = CNéV . A similar proof using Jyj, shows that

—~— (W re
deti/ )v(wgo) = (VW' Assertions (2) and (3) are then immediate. O



12 CHAPTER 1. REFLECTION GROUPS, BRAID GROUPS, HECKE ALGEBRAS

Remark 1.4. — As a consequence of the preceding lemma, we see that if w € W is
a (-regular element, then

dety (w) = CN‘VP , dety (w)™! = CNW and thus (W =1.

1.1.3. Field of definition. —

The following theorem has been proved through a case by case analysis [Ben76]
(see also [Bes97]).

Theorem 1.5. —
Let W be a finite reflection group on V. Then the field

Qw = Qtry (w) | we W)
s a splitting field for all complex representations of W.

The ring of integers of Qu will be denoted by Zy,. If L is any number field, we
set
Ly = L((trv (w))wew) ,
the composite of L with Q.

1.1.4. Reflection cosets. —
Following [BMM99], we set the following definition.

Definition 1.6. — A reflection coset on a characteristic zero field K is a pair G =
(V, W) where

— V is a finite dimensional K-vector space,

— W is a finite subgroup of GL(V') generated by reflections,

— @ is an element of finite order of Ngrvy(W).

We then denote by

— © the image of ¢ in Ngp,v)(W)/W, so that the reflection coset may also be
written G = (V, W, %), and we denote by dg the order of @,

— Ad(yp) the automorphism of W defined by ¢ ; it is the image of ¢ in
Nevw)(W)/Caro) (W),

— Out(yp) (or Out(®)) the image of ¢ in the outer automorphism group of W, i.e.,
the image of ¢ in Ngpv)(W)/WCqrvy(W) (note that Out(y) is an image of
both ¥ and Ad(y)).

The reflection coset G = (V, W, %) is said to be split if =1 (i.e., if 0g = 1).

Definition 1.7. —
1. If K =Q (so that W is a Weyl group), we say that G is rational.
A “generic finite reductive group” (X, R,Y, RV, W) as defined in [BMM93|
defines a rational reflection coset G = (Q ®z Y,Wy). We then say that
(X,R,Y, RV, W) is associated with G.
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2. There are also very twisted rational reflection cosets G defined over K = Q(v/2)
(resp. K = Q(ﬁ)) by very twisted generic finite reductive groups associated
with systems 2By and 2Fy (resp. 2Gs). Again, such very twisted generic finite
reductive groups are said to be associated with G. Note that, despite of the
notation, very twisted rational reflection cosets are not defined over Q : W is
rational on Q but not We.

3. If K C R (so that W is a Cozeter group), we say that G is real.

For details about what follows, the reader may refer to [BM92] and [BMM93].

— In the case where G is rational, given a prime power ¢, any choice of an associated
generic finite reductive group determines a connected reductive algebraic group
G defined over F, and endowed with a Frobenius endomorphism F defined by
¢ (i.e., F acts as qp on X(T) where T is an F-stable maximal torus of G).
Such groups are called the reductive groups associated with G.

— In the case where K = Q(v/2) (resp. K = Q(v/3)), given G very twisted
rational and ¢ an odd power of v/2 (resp. an odd power of v/3), any choice of an
associated very twisted generic finite reductive group determines a connected
reductive algebraic group G defined over qu and endowed with an isogeny
acting as qp on X (T). Again, this group is called a reductive group associated
with G.

Theorem 1.5 has been generalized in [Mal06, Thm 2.16] to the following result.

Theorem 1.8. —
Let G = (V,Wy) be a reflection coset. Let

Qg := Q(trv (wy) [ w € W)

be the character field of the subgroup (W) of GL(V) generated by W. Then every
p-stable complex irreducible character of W has an extension to (W) afforded by a
representation defined over Qg.

1.1.5. Generalized invariant degrees. —

In what follows, K denotes a number field which is stable under complex conjuga-
tion, and G = (V, W) is a reflection coset over K.

Let r denote the dimension of V.

One defines the family ((d1,(1), (d2, (), ..., (dr, () of generalized invariant de-
grees of G (see for example [Brol0, 4.2.2]): there exists a family (f1, fo,..., fr) of r
homogeneous algebraically independent elements of SVW and a family (¢, (o, - .., ()
of elements of p such that

- SVW:K[flafZa"'afr},
— fori=1,2,...,r, we have deg(f;) = d; and ¢.f; = (; f;.
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Remark 1.9. — Let Discyy = >, am f™ be the expression of Discy as a polyno-
mial in the fundamental invariants f1,..., f, where the sum runs over the monomials
f™ = f{" ... fmr. Then for every m with apy, # 0 we have Ay (9) = ¢ -+ .

In the particular case where w € W is (-regular and the order of ( is one of the
invariant degrees d;, we recover 1.3(2) by using the result of Bessis [Bes01, 1.6] that
in that case f: w/di is one of the monomials occurring in Discyy.

The character dety : Ngpv)(W)/W — K* (see 1.1.2 above) defines the root of

unity
detg := det, (P).
Similarly, the character det’vv attached to Jyj, (see 1.1.2) defines a root of unity

detg, := det'vv(E) attached to G.

The character Ay defined by the discriminant of W defines in turn a root of unity
by

Ag = det@,.deté = AW(@) .

The following lemma collects a number of conditions under which Ag = 1.

Lemma 1.10. —
We have Ag = 1 if (at least) one of the following conditions is satisfied.

1. If the reflection coset G is split. Moreover in that case we have detg = detd = 1.
2. If W contains a 1-reqular element.
3. If G is real (i.e., if K CR).

Proof. —
(1) is trivial.
(2) We have Ag = Ay (@) = 1°" =1 by Lemma 1.3(2).

(3) Consider the element Jw = [[yesw)jr introduced above. Since ¢ €
NerLovy(W), ¢ acts on A(W), hence Jy is an eigenvector of . If ¢ has finite order,
the corresponding eigenvalue is an element of pu(K), hence is +1 if K is real.

Moreover, all reflections in W are “true reflections”, that is ey = 2 for all H €
A(W). Tt follows that Discyy = J3, and so that Discyy is fixed by ¢. O

1.2. Uniform class functions on a reflection coset

The next paragraph is extracted from [BMM99]. It is reproduced for the conve-
nience of the reader since it fixes conventions and notation.
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1.2.1. Generalities, induction and restriction. —

Let G = (V, W) be a reflection coset over K.

We denote by CF¢(G) the Z x-module of all W-invariant functions on the coset W
(for the natural action of W on W by conjugation) with values in Z g, called uniform
class functions on G. For a € CFy(G), we denote by a* its complex conjugate.

For o, 0’ € CFy¢(G), we set (a,a/); = Wi Y wew alwp)a (we)*.

Notation

e If Zx — O is a ring morphism, we denote by CF (G, O) the O-module of W-
invariant functions on W with values in O, which we call the module of uniform
class functions on G with values in O. We have CFy(G, O) = O ®z,. CFy(G).

e For wp € W, we denote by ch®

we (or simply chy,,) the characteristic function

of the orbit of wy under W. The family (chg(‘p) (where we runs over a complete set

of representatives of the orbits of W on W) is a basis of CFu¢(G).
e For wy € Wy, we set

Ry, = |Ow(wp)|chy,,

(or simply Ru).

Remark 1.11. —

In the case of reductive groups, we may choose K = Q. For (G, F') associated to G, let
Uch(G™) be the set of unipotent characters of G'': then the map which associates to R, the
Deligne-Lusztig character R”(r;w (Id) defines an isometric embedding (for the scalar products
(o, @) and (@, o) gr) from CFyu¢(G) onto the Z-submodule of QUch(G*") consisting of the
Q-linear combinations of Deligne-Lusztig characters (i.e., “unipotent uniform functions”)
having integral scalar product with all Deligne-Lusztig characters.

e Let (W) be the subgroup of GL(V') generated by Wp. We recall that we denote
by @ the image of ¢ in (W¢)/W — thus (W¢)/W is cyclic and generated by @.
For ¢ € Irr((W)), we denote by RS (or simply Ry) the restriction of ¢ to the

coset W. We have Rg = Wi >wew Y(we)RE,, and we call such a function an

almost character of G.

Let Irr(W)? denote the set of gp-stable irreducible characters of W. For 6 €
Irr(W)?, we denote by Eg(f) (or simply F(6)) the set of restrictions to W of the
extensions of # to characters of (W).

The next result is well-known (see e.g. [DM85, §11.2.c]), and easy to prove.

Proposition 1.12. —
1. Each element o of Eg(0) has norm 1 (i.e., (a,a)g = 1),

2. the sets Eg(0) for 8 € Irr(W)%® are mutually orthogonal,
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3. CFy(G,K) = @;‘em(w)a KEg(0), where we set KEg(0) := KRS for some
(any) ¥ € Eg(0).

Induction and restriction

Let L = (V, WpLwy) be a subcoset of maximal rank of G [BMM99, §3.A], and let
a € CFu(G) and S € CFy¢(L). We denote

e by Resf’a the restriction of « to the coset Wpwe,
e by Indj(f’ B the uniform class function on G defined by

1 .
(1.13) md?B(up) == —— Z Blvupv™)  for up € W,
‘WH‘| veW
where S(zp) = B(zyp) if € Wrw, and B(zgp) = 0 if 2 ¢ Wpw. In other words, we
have

(1.14) IndfB(up) = Y B((ue)).

vEW/WL, " (up)eEWLwe

We denote by 1€ the constant function on W with value 1. For w € W, let us
denote by T, the maximal torus of G defined by T, := (V,wep). It follows from
the definitions that
(1.15) RS, =Tndf 17w

we

For a € CFy(G), g € CFy (L) we have the Frobenius reciprocity:
(1.16) (a,IndfB) = (Resfa, B), -

Remark 1.17. —

In the case of reductive groups, assume that L is a Levi subcoset of G attached to the Levi
subgroup L. Then Indf corresponds to Lusztig induction from L to G (this results from
definition 1.13 applied to a Deligne-Lusztig character which, using the transitivity of Lusztig
induction, agrees with Lusztig induction). Similarly, the Lusztig restriction of a uniform
function is uniform by [DL76, Thm.7], so by (1.16) Resf corresponds to Lusztig restriction.

For further details, like a Mackey formula for induction and restriction, the reader
may refer to [BMM99].

We shall now introduce notions which extend or sometimes differ from those intro-
duced in [BMM99]: here we introduce two polynomial orders |G*¢| and |G¢| which
both differ slightly (for certain twisted reflection cosets) from the definition of poly-
nomial order given in [BMM99].
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1.2.2. Order and Poincaré polynomial. —

Poincaré polynomial

We recall that we denote by SV the symmetric algebra of V' and by SVW the
subalgebra of fixed points under W.

The group Ngr,vy(W)/W acts on the graded vector space SV = @@, SV,
For any @ € Ngr,vy(W)/W, define its graded character by

grchar(@; SVW) - Ztr (B SVIV)a™ € Zi[[z]] -
n=0

Let G = (V,W,®) with dimV = r.

Let us denote by ((d1,¢1),- .-, (dr,¢-)) the family of generalized invariant degrees
(see 1.1.5 above). We have (see e.g. [BMM93, 3.5])
1 1

\W| Z detv(l —wez) Hi;’(l —Gat)

grchar(g; SVW) =

The Poincaré polynomial Pg(x) € ZK [] of G is defined by
1 1
P = =
6l) = rebar( 5VW) T 5 I
[W| =W dety (1 — we)

(1.18)

H (1-¢ z?
The Poincaré polynomial is semi-palindromic (see [BMM99, §6.B]), that is,
(1.19) Pe(1/2) = (—1)"GiGo -+ G~ N Py ()

Graded regular representation
Let us denote by S VJXV the maximal graded ideal of SVW (generated by
f1, f2,-- ., fr). We call the finite dimensional graded vector space
KWe .= SV/SVV sV

the graded reqular representation.
This has the following properties (see e.g. [Bou68, chap. V, §5, th. 2]).
Proposition 1.20. —

1. KW#" has a natural Ngy,vy(W)-action, and we have an isomorphism of graded
K Ngivy(W)-modules

SV ~ KW& @k SVV .

2. As a KW -module, forgetting the graduation, KW#" is isomorphic to the reqular
representation of W.
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3. Denoting by KW the subspace of KW&" generated by the elements of degree
n, we have
Nrcf

(a) KW = @M KW,

(b) the dety -isotypic component of KW is the one-dimensional subspace of
KWW generated by Jyy,

(c) KW®E s the one-dimensional subspace generated by Jy, and is the
dety, -isotypic component of KWE".

Fake degrees of uniform functions
e We denote by trgwe € CFu¢(G,Zkx]) the uniform class function on G (with
values in the polynomial ring Zg[z]) defined by the character of the graded regular
representation KW#". Thus the value of the function trgwe on we is
Nyt
tr e (wep) 1= Z tr(we; KW M)z™,
n=0

We call trgwe the graded regular character.

e We define the fake degree, a linear function Fegg : CFy¢(G) — K[x], as follows:
for a € CFyt(G), we set

Nyt
1
(1.21) Fegg (@) == (v, trgwer ) :Z (ngva(w@tr(ww; Kw®™ )*> 2"

n=0
We shall often omit the subscript G (writing then Feg(a)) when the context allows
it. Notice that

(1.22) Feg(RSw) = trgwe (Wp)*,

and so in particular that
(1.23) Feg(R},) € Zx[x].

Lemma 1.24. —
We have )
treyer = W Z FegG(ng)*ng.
weW
Proof of 1.24. —

It is an immediate consequence of the definition of Rﬁw and of (1.22). O

Fake degrees of almost characters

Let E be a K(Wyp)-module. Its character 6 is a class function on (We). Its
restriction Ry to W is a uniform class function on G. Then the fake degree of Ry
is :

(1.25) Fegg(Ry) = tr(y; Homgw (KWS' E)).
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Notice that
(1.26) Fegy(Ryg) € Zlexp 2im/dg][x]
(we recall that d¢ is the order of the twist 3 of G).

The polynomial Fegg (Rp) is called fake degree of 6.

Let 6 € Trr(W)®?. Whenever 9 € Irr({W)) is an extension of 0 to (W), then
Reg(g’ := Fegg(Ry)* - Ry depends only on 6 and is the orthogonal projection of trgyyer
onto K[z]Eg(6), so that in other words, we have

(1.27) trgwe = > Regf .
9elrr(W)®
Polynomial order and fake degrees
From the isomorphism SV =2 KW @ (SV)W of (Wp)-modules (see 1.20) we
deduce for w € W that
tr(wep; SV) = tr(we; KW )tr(wp; SVV),

hence
1

1
)|W| U;{/ dety (1 — zvp)

Computing the scalar product with a class function a on W gives

tr(wep; SV) = tr(wp; KIW8*

1 a(w 1 1
(1.28) WW;VCM ZFegG(a)Ww;V dotv (1 = zwp)*’
or, in other words
(1.29) (a,trsv)e = (a, trewe)e (1%, trsy) .
Let us set
(1.30) Sg(a) := (a,trsy)g -
Then (1.29) becomes
(1.31) Sg(a) = Fegg (a)Sg(19).
By definition of the Poincaré polynomial we have Sg(1%) = 1/Pg(x)*, hence
Fegg (o
(1.32) Se(a) == ]qu(é;:c()’)'

For a subcoset L = (V, W,we) of maximal rank of G, by the Frobenius reciprocity
(1.16) we have
Nyt
(1.33) Fegg (Indf 1Y) = (1%, ResFtr e ), = Z tr(wep; (KW )Weysgn
n=0

where (KW (™)Wi are the Wp-invariants in KW ™).
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Let us recall that every element we € W defines a maximal torus (a minimal
Levi subcoset) Ty, := (V, wy) of G.

Lemma 1.34. —

1. We have
Pe(z)*
P (x)*
2. P (z) divides Pg(z) (in Zk[z]),
3. for wp € Wy, we have

P(G(SC) o o G \*
Pr, (0) trgwe (wp) = Fegg (Ry,)" -

= FegG (Indg 1]L) )

Proof of 1.84. —
(1) By (1.32), we have Feg(Indf1Y) = Sg(Indf1%)Pg(z)*. By Frobenius reci-
procity, for any class function o on L we have

Sg(IndPa) = (Indga,trsvm = (o, Resftrsy), = SiL(a),

b

Pu(z)

(2) is an immediate consequence of (1).

(3) follows from (1) and from formulae (1.15) and (1.22). O

and so Sg(Indf1%) = Sy (1%) =

Let us now consider a Levi subcoset L = (V, WLwy). By 1.34, for vwy € Wpwep,

we have
trwe (Vwe) = iﬁéz)) Pﬂiﬂ:uigil) = Jiig)) trKWfr(vwcp) ,

and by 1.34, (1)
(1.35) ResCtrgpye = Feg(IndEl]L)*trKWfr .
Lemma 1.36. —

For 8 € CFy(L) we have

Ps(x)*

Fege(Indg ) = 55 Feg (6)

Indeed, by Frobenius reciprocity, (1.35), and Lemma 1.34,

FegG(Indf’B) = (Ind%ﬁ,trKWgr>G = <B,Res§tergr>]L

= Fegg(Ind; 1%) (5, trpewes), = Fegg (Indg 1) Fegy (8)

_ Ps(z)”
= P]L(x)*FeglL(ﬁ)~




1.2. UNIFORM CLASS FUNCTIONS ON A REFLECTION COSET 21

Remark 1.37. —

In the case of reductive groups, it follows from (1.22) and (1.34 (3)) that Feg(Ruwe)(q) is
the degree of the Deligne-Lusztig character R%ww. Since the regular representation of G
is uniform, it follows that trxwres corresponds to a (graded by z) version of the unipotent
part of the regular representation of G¥', and that Feg corresponds indeed to the (generic)
degree for unipotent uniform functions on G¥'.

Changing x to 1/x

As a particular uniform class function on G, we can consider the function dety
restricted to W, which we still denote by dety . Notice that this restriction might
also be denoted by Rgetw since it is the almost character associated to the character
of (W) defined by dety .

Lemma 1.38. —
Let o be a uniform class function on G. We have

Sg(adet})(z) = (—1)"z7"Sg(a®)(1/z)* .

Proof. —
. 1 o(we
Since S(G,(O[) = W ZwEW (M , We see that
a(wep)*dety (wep)
Sg(adety)(@ |W| Z dety (1 —xwgo)

*

|W| Z detv —w)

(we)*
\W| Z detv l—wgo/x)

=(=D)"x TSG(Oé )(1/39)~

:( 1 Tl'7r

Corollary 1.39. —
We have

ref

Fegg(dety,) = (¢G5 -+ Gra™w .
Proof of 1.59. —
Applying Lemma 1.38 for o = 1€ gives
Sg(dety)(z) = (=1)"27"Se(1%)(1/2)" = (1)~ 5
hence by (1.19)
So(det ) () = GG - G

and the desired formula follows from (1.32). O
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Fake degree of dety and some computations

Proposition 1.40. —
We have
hy
Fegg (dety)(z) = det@(@)xNWp

Fegg (dety) () = detl,” ()" 2™

Corollary 1.41. —
We have

det}, (%) = GG+ &
dety (P) = Aw ()¢ G -+ ¢
Proof of 1.40 and 1.41. —
By Propositions 1.12 and 1.20(3), we see that

1 hypy | hyp

Feg (dety)(z) = <|VV Z dety (w)tr(we; KW W) )a:NW
wew
dety ()

Nhyp ;7 Nhyp
= — "7 _z"w =det zhwo
tr(p; KW (NWP)) 2

A similar proof holds for Fegg (dety,)(z).
The corollary follows then from 1.39 and from de‘n'vdet’vv =Aw. O

Corollary 1.42. —
Assume that we is a (-reqular element of Wy. Then

hyp
Fegg (dety ) (z) = dety (we)(¢ L) Nw
* * _ ref
Fegg (dety,) (z) = dety, (wep) (¢~ o)W .
In particular, we have

Fegg(dety)(¢) = dety (wy)
Fegg(dety ) (¢) = dety, (wy) .

Note that the last assertion of the above lemma will be generalized in 1.53.

Proof. —
By Proposition 1.40, and since det}, (%) = dety (wp)dety (wp)* , we have

Fegg (dety ) (z) = det'V(E)*xN‘};Vyp = &gtv(wgo)*detv(wgo)xNeVyp .

Now by Lemma 1.3, we know that &vetv(wgo) = CNsvyp , which implies that
Fegg(dety)(z) = detv(ww)(g_lac)NeVyp .
The proof of the second equality goes the same. O

Lemma 1.43. —
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1. For all w € W we have

Fegg (Ru)(1/2) = dety (w)([] )2~ Fegg (Rug) (2)"

i=1

2. If wy is a (-regular element, we have

Fegg (Ruyp)(2)" = (¢2) ™MW Fegg (Ryy) ().

Proof. —

(1) By (1.34, (3)), we have FegG(ng) _ Pg(x)*

P, (x)*
Hi;(l — Gz%) . Moreover, P, (z) = dety (1 — wez). It follows that

T = ¢t
F RG — H’L—l( 7 )
egc( w“") dety (1 — wepz)*

By (1.18), we have Pg(x) =

The stated formula follows from the equality > ;—j(d; — 1) = NI, which is well
known (see e.g. [Brol0, Thm. 4.1.(2)(b)]).

(2) By Corollary 1.41, we know that [['=} ¢ = det}, " (@)*, hence (by Lemma
1.3(2))

[1¢ = ¢ dety (wp)" .
i=1

It follows from (1) that

ref

Fegg(Ru)(1/2)" = (¢ la) ™™ Fegg (Ruy ) (x) -

1.2.3. The polynomial orders of a reflection coset. —

We define two “order polynomials” of G, which are both elements of Zk[z], and
which coincide when G is real. This differs from [BMM99].

Definition 1.44. —
(nc) The noncompact order polynomial of G is the element of Zk|[x] defined by
|Glne : = (—1)"Fegg (dety ) (z) Pe(x)*
ref =r )
= (=1)"dety, " (@) 2™ T](1 - ¢ o)
i=1

= (GG )2V T - ¢).

i=1
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(¢) The compact order polynomial of G is the element of Zk|[x] defined by
Gle : = (—1)TFegg(detv)(x)PG($)*

= (—1)"det}, (@)* N”’H (1-

= Aw (@ N“”’H =G

Remark 1.45. —
1. In the particular case of a maximal torus T, := (V,wyp) of G, it is readily seen
that
ITwelne = (—1)"dety (we)*det(1 — wex)*
ITwele = (—1)"dety (we)det(1 — wpz)* = dety (z — we) .
2. In general the order polynomials are not monic. Nevertheless, if G is real they
are equal and monic (see Lemma 1.10 for the case of |G|.). If G is real, we set

|G| := |Glne = |G-

Remark 1.46. — If G is rational or very twisted rational, and if G (together with
the endomorphism F') is any of the associated reductive groups attached to the choice
of a suitable prime power ¢, then (see e.g. [Ste68, 11.16])

Gla=q = 1G"].
Proposition 1.47. —
1. We have
e = ety ) s B (R ).

2. If moreover wyp is a (-reqular element of W, we have

|G|C _ hyp
|T | = (C 1I)NW FegG(R’UMP)(I)’
we|c
G n _ ref
hl‘wjofnc = (C 1x)NW FegG(RwW)(x) .
Proof. —
(1) By Definition 1.44 and the above remark, 1, and by Lemma 1.34, we have
Gl v Pe(2)”
= det!, ()" dety (wep)*z —_—
|T1u¢|c v PTww(x)*

— dety (we)* 2™ Fegg (Rug) (2),
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proving (1) in the compact type. The proof for the noncompact type is similar.
(2) follows from Lemma 1.3. O

1.3. ®-Sylow theory and ®-split Levi subcosets

1.3.1. The Sylow theorems. —
Here we correct a proof given in [BMM99], viz. in Th. 1.50 (4) below.

Definition 1.48. —

— We call K-cyclotomic polynomial (or cyclotomic polynomial in K[z]) a monic
irreducible polynomial of degree at least 1 in K[x] which divides ™ — 1 for some
nteger n > 1.

— Let ® € K|z] be a cyclotomic polynomial. A ®-reflection coset is a torus whose
polynomial order is a power of ®.

Remark 1.49. —

If G is an associated finite reductive group, then a ®4-reflection coset is the reflec-
tion datum of a torus which splits over F,. but no subtorus splits over any proper
subfield.

Theorem 1.50. —

Let G be a reflection coset over K and let ® be a K-cyclotomic polynomial.
1. If ® divides Pg(z), there exist nontrivial ®-subcosets of G.
2. Let S be a maximal ®-subcoset of G. Then

(a) there is w € W such that S = (ker ®(we), (W) |ker d(wy)) »

(b) [S| = ®4®) | the full contribution of ® to Pg(x).
3. Any two maximal ®-subcosets of G are conjugate under W.
4. Let S be a mazimal ®-subcoset of G. We set L := Cg(S) and Wg(L) :=

|G|UC |(G’|c
= =1 mod .
(We(L)[|Llne — [We(L)[ILl
5. With the above notation, we have
L = (V,Wpwe) with Wi, = Cy (ker ®(wep)) .

We set V(L, @) := ker ®(we) viewed as a vector space over the field K[z]/(®(x))
through its natural structure of K[wg|-module. Then the pair (V (L, ®), Wg (L))
s a reflection group.

The maximal ®-subcosets of G are called the Sylow ®-subcosets.
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Proof of 1.50. —

As we shall see, assertions (1) to (3) are consequences of the main results of Springer
in [Spr74] (see also Theorem 3.4 in [BM92]).

Assertion (5) is nothing but a reformulation of a result of Lehrer and Springer (see
for example [Bro10, Thm.5.6])

For each K-cyclotomic polynomial ® and w € W, we denote by V(wg, ®) the
kernel of the endomorphism ®(wy) of V' (i.e., V(L, ®) viewed as a K-vector space).
Thus

S(w(p7 (b) = (V(w% (P)a (UJQO)‘V(w@,@))
is a torus of G.

Let us denote by K’ a Galois extension of K which splits ®, and set V' := K'Q V.
For every root ¢ of ® in K’, we set V'(wep,() := V'(wep, (x — ()). It is clear that
V'(we, @) = P, V'(wp, () where ¢ runs over the set of roots of ®, and thus

dimV’ (wep, @) = deg(®) - dimV’ (wep, ¢) .
It follows from [Spr74], 3.4 and 6.2, that for all such ¢
(S]-) maX(wEW)dimvl(wsoa C) = a((I)),
(S2) for all w € W, there exists w’ € W such that dimV’'(w'p,{) = a(®) and
V'(we,¢) C V'(w'e, (),
(S3) if wy,we € W are such that dimV’'(wip,() = dimV’(wap, () = a(P), there
exists w € W such that w - V' (w1, () = V' (wap, ().

Now, (S1) shows that there exists w € W such that the rank of S(we, ®) is
a(®) deg(®), which implies the first assertion of Theorem 1.50.

If V'(we, () € V'(w'p, ) then we have V' (wp,c(¢)) C V' (w'p,0(C)) for all o €
Gal(K'/K), hence

o V'(wp,®) CV'(w'p, D),

® V) = WPy,

So (S2) implies that for all w € W, there exists w’ € W such that the rank of S(w’¢, ®)
is a(®) deg(®P) and S(wep, P) is contained in S(w’, @), which proves assertion (2) of
Theorem 1.50.

For the same reason, (S3) shows that if w; and wy are two elements of W such
that both S(w;p, ®) and S(wsp, ®) have rank a(P) deg(P), there exists w € W such
that S(wwypw™t, ®) = S(waep, @), which proves assertion (3) of Theorem 1.50.

The proof of the fourth assertion requires several steps.

Lemma 1.51. —
For S a Sylow ®-subcoset of G let L := Cg(S). Then for any class function o on
G, we have

Fegg(a)(x) = WI;MMF%L(RGSEQ)(@ mod ®(z) .
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Proof of 1.51. —
We have

Pg(x)"Sg (o) = Fegg () |W| Z detl(z)ut@)

and it follows from the first two assertions of Theorem 1.50 that

Fege (a)(x mod ®(z),

|W| Z det( 1 - xwgp)

where w runs over those elements of W such that V(we, ®) is of maximal dimension.
These subspaces are permuted transitively by W (see (S3) above). Let V(wop, ®) be
one of them, and let S be the Sylow ®-subcosets defined by

S= (V(w()(p, (I))a (wOSO)|V(wO%q>))'

Let us recall that we set L = Cg(S) = (V, WLwoyp). The group Ny (S) consists of all
w € W such that

w.V (wop, @)=V (wop, @) and  (wwopw™ )iy o e = (WP |y s ) -
Since in this case every w € W such that w.V(wge, ®) = V(wop, ®) belongs to
Nw (S), we have

Feg(a)(z) = [W : Nw (S mod ®(z),

|W| Z det( 1—xw<p)

where “w ~ wy” means that V(wep, ®) = V(wogo, D).
Following (S3) above, the elements w ~ wq are those such that ww * acts trivially
on V(woep, ®), i.e., are the elements of the coset Wpwg. Thus

2 : a(wwop) o
det(1 — zwo)* WL|SL (R .
det(l — mwgp Z det 1— xwwow) ‘ Hal ]L( €Sy, (a))

w~wo weWr,

We know that Ny (S) C Nw (L). Let us check the reverse inclusion. The group
Ny (L)/Wy, acts on V"% and centralizes (w0<»0)\va- Hence it stabilizes the charac-
teristic subspaces of (woy)| . , among them V(wop, ®). This shows that Ny (L) =
Nw (S). In particular [Ny (S)| = |[WL||Wg(L)]. O

Applying Lemma 1.51 to the case where a = 1€ gives

Proposition 1.52. —
Let S be a Sylow ®-subcoset of G, and set L = Cg(S).
1 P(G,(l‘)*
W] Pu(z)* ,
2. Whenever a is a class function on G, we have

Fegg(a)(z) = Fegy (ResP (a))(z) mod ®(z).

=1 mod ®(z).
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Now applying Lemma 1.51 and Proposition 1.52 to the cases where « is dety and
dety, gives the desired congruences in Theorem 1.50(4) (thanks to Definition 1.44)

|Glne/(IWe(L)[|Lfne) = |Gle/([We(L)[[Ll) =1 mod ().

Fake degrees and regular elements

Let a be a class function on G. Let wy be ®-regular, so that the maximal torus
Tw, of G is a Sylow ®-subcoset. We get from Proposition 1.52(2) that

Fegg()(z) = a(wy) mod &(x),

which can be reformulated into the following proposition.

Proposition 1.53. —
Let wy be (-regular for some root of unity C.

1. For any a € CFy¢(G) we have Fegg(a)(¢) = a(wy).
2. In particular, we have Fegg(Ruwy,)(C) = |Cw (we)|.

1.4. The associated braid group

1.4.1. Definition. —

Here we let V' be a complex vector space of finite dimension r, and W C GL(V)
be a complex reflection group on V.

We recall some notions and results from [BMR98].

Choosing a base point zyp € V™ =V — UHeA(W) H, we denote by By :=
w1 (V'8 /W, xo) the corresponding braid group, and we set Py := 71 (V'8 x()

Since the covering V™8 — V'8 /¥ is Galois by Steinberg’s theorem (see e.g.
[Bro10, 4.2.3]), we have the corresponding short exact sequence

1-Pyw—>By —-W-—>1.

A braid reflection s in By is a generator of the monodromy around the image in
V/W of a reflecting hyperplane H € A(W). We then say that s is a braid reflection
around H (or around the orbit of H under W).
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1.4.2. Lengths. —
For each H € A(WW), there is a linear character

lyg : BW — 7
such that, whenever s is a braid reflection in Byy,

l 1 if s is a braid reflection around the orbit of H,
() = 0 if not.

We have Iy = Iy if and only if H and H’ are in the same W-orbit. We set

l:= Z Ly .

HeA(W)/W

1.4.3. The element wy. —
We denote by my (or simply by = if there is no ambiguity) the element of Py
defined by the loop
w i [0,1] = V' | ¢ — exp(2mit)xzg .

We have wy € ZBy , and if W acts irreducibly on V', we know by [DMM11, Thm.
1.2] (see also [Bes06, 12.4] and [BMR98, 2.24]) that wy is a generator of ZPyw

called the positive generator of ZPyy.
We have

lg(mw) = |orbit of H under Wlep

and in particular (by formula 1.1)

(mw) = Nigt + NP

1.4.4. Lifting regular automorphisms. —

For this section one may refer to [Brol0, §18] (see also [DMO06, §3]).

A. Lifting a C-regular element wp. —

— We fix a root of unity ¢ and a {-regular element wep in W, and we let § denote
the order of wy modulo W. Notice that since (w¢)? is a (°-regular element of
W, then (by 1.4) (%W = 1.

Let us also choose a,d € N such that { = (5 (a/d is well defined in Q/Z). By
what precedes we know that d | eyrad, or, in other words, ey da/d € Z.

— Let us denote by x; a (-eigenvector of wy, and let us choose a path + from xg
to 1 in V8,
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— We denote by 7, /4 the path in V*®® from x; to (x1 defined by
Ty ,a/d : t > exp(2miat/d).x; .
Note that m,, ,/q does depend on the choice of a/d € Q and not only on ¢.
Following [Bro10, 5.3.2.], we have

— a path [wyl, /4 (sometimes abbreviated [wy]) in V™8 from g to (wey)(xo),
defined as follows:
Teq,a/d

/\ (we)(vh)

(Wl a/a o T 1 Cxy ~~rmm (wip) (z0)

— an automorphism a(w¢),,,/q (sometimes abbreviated a(wy)) of By, defined as
follows: for g € W and g a path in V™ from zg to gzo, the path a(wy), . q(g)
from xg to Ad(wp)(g)zo is

(1.54)
a(wy)y,a/a(g) :

w (we) (g) d(we)(9)([we]
20~ (10p) () L ) o LI K ) 9) (o)

with the following properties.

Lemma 1.55. —
1. The automorphism a(wy), q/q has finite order, equal to the order of Ad(wy)
acting on W.

2. The path

Pr.aja = [WPly.asa - a(we)([wely a/a) - 'a(w¢)671([w@]w,a/d)
(often abbreviated p) defines an element of By which satisfies

d _ da
Pyaja =T -

Remark 1.56. —

1. Notice that a/d € Q is unique up to addition of an integer, so that p is defined
by we up to multiplication by a power of 7.
2. Let us consider another path 4 from z( to z}, another eigenvector of we with
eigenvalue ¢. Then
(a) the element p., , /4 is conjugate to p, , /4 by an element of Py, and
(b) the element a(wy),/ /4 is conjugate to a(wy), 4 q by an element of Pyy.
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B. When ¢ is 1-regular. —

Now assume moreover that ¢ is 1-regular, and choose for base point zy an element
fixed by . Let us write 1 = exp(2min) for some n € Z (which plays here the role
played by a/d above).

Lemma 1.57. —

1. The corresponding loop [¢] defines ™.
2. The path [wy),,n defines a lift w., , (abbreviated to w) of w in By .
3. We have a(wyp),, = Ad(w, ) -a(p).

Proof. —

(1) is obvious. (2) results from the fact that the path [we], /4 starts at 2o and
ends at wpxry = wxg.

Since ¢(xg) = xg, Definition 1.54 becomes simply a(p)(g) = ¢(g), a lift of
Ad(¢)(g) to By. To prove (3), we notice that by (2) we have

a(we)y,a/a(8) =
% wro L2 wipg) (ro) L A (wep) () o).
Since
Ad(w)(g) =
T~~~ W ve, Wy M)Ad(w)(g)(xo)
we see that
Ad(w)(p(g)) =
g~ wrg " gy 2O ) ) )
thus showing that Ad(w)(¢(g)) = a(wy)(g) . O

In that case, we can consider the semidirect product By, x (a(y)), in which we set
¢ = a(p). Then assertion (2) of Lemma 1.55 becomes

p=(wp)’ and (wp)'=m.

C. Centralizer in W and centralizer in By,. —

Now we return to the general situation (we are no more assuming that ¢ is 1-
regular).

By (5) in Theorem 1.50, we know that the centralizer of wy in W, denoted by
W (we), is a complex reflection group on the (-eigenspace V (w¢) of we.
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Assume from now on that the base point x¢ is chosen in V(w¢g)™#. Let us denote
by By (w¢) the braid group (at zg) of W (wy) on V(wy), and by Py (wyp) its pure
braid group.

Since the reflecting hyperplanes of W (w¢) are the intersections with V (wy) of the
reflecting hyperplanes of W (see for example [Brol0, 18.6]), the inclusion of V (w¢)
in V induces an inclusion

V (wip)™® < V'8

which in turn induces a natural morphism (see again [Bro10, 18.6])

Bw (wp) = Oy (a(wyp)) .-
The next statement has been proved in all cases if 7 =1 [Bes06, 12.5,(3)].

Theorem—Conjecture 1.58. —
The following assertion is true if p = 1, and it is a conjecture in the general case:
The natural morphism

Bw (wp) = O,y (a(wy))

s an isomorphism.

Remark 1.59. — It results from the above Theorem—Conjecture that the positive
generator my (wep) of the center ZPw (wep) of Py (we) is identified with the positive
generator 7 of Pyy.

1.5. The generic Hecke algebra

1.5.1. Definition. —

The generic Hecke algebra H(W') of W is defined as follows. Let us choose a
W -equivariant set of indeterminates

u = (uH,i)(HGA(W))(i:(),...,erl) .

The algebra H (W) is the quotient of the group algebra of By, over the ring of Lau-
rent polynomials Z[u,u=?] := Z[(u§17)H1} by the ideal generated by the elements
Hfﬁgl(s —ugy,;) for H € A(W) and s running over the set of braid reflections around
H.
The linear characters of the generic Hecke algebra H (W) are described as follows.
Let x : H(W) — Z[u,u™!] be an algebra morphism. Then there is a W-equivariant
family of integers (j}5) meaw), il € {0,...,em — 1}, such that, whenever s is a braid

reflection around H, we have x(s) = Upr jx -
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1.5.2. Parabolic subalgebras. —

Let I be an intersection of reflecting hyperplanes of W, and let By, be the braid
group of the parabolic subgroup Wy of W.

If u = (umi)HeAW))(i=0,....e—1) 15 @ W-equivariant family of indeterminates as
above, then the family

ur = (UHi) (HeA(W)))(i=0,....e—1)
is a Wr-equivariant family of indeterminates.

We denote by H (W, W) the quotient of the group algebra of By, over Z[ur, u; ']
by the ideal generated by the elements Hfj(;l(s —up;) for H € A(Wy) and s a braid
reflection of By, around H.

The algebra H (W, W) is a specialization of the generic Hecke algebra of W7, called
the parabolic subalgebra of H(W) associated with I.

The natural embeddings of By, into By, (see e.g. [BMR98, §4]) are permuted
transitively by Py. The choice of such an embedding defines a morphism of
H(W;, W) onto a subalgebra of H(W) ([BMR98, §4]).

1.5.3. The main Theorem—Conjecture. —

Notation.—

— An element P(u) € Z[u,u™!] is called multi-homogeneous if, for each H €
A(W), it is homogeneous as a Laurent polynomial in the indeterminates {ug ; |
i:O,...,eH—l}.

— The group Gw =[], AW/ W &.,, acts naturally on the set of indeterminates
u.

— We denote by & +— ¢Y the involutive automorphism of Z[u,u™!] which sends
Um,; to u;lll (for all H and ¢).

The following assertion is conjectured to be true for all finite reflection groups. It

has been proved for almost all irreducible complex reflection groups (see [BMM99|
and [MM10] for more details).

Theorem—Conjecture 1.60. —

1. The algebra H(W) is free of rank |W| over Z[u,u™'], and by extension of scalars
to the field Q(u) it becomes semisimple.
2. There exists a unique symmetrizing form

w : H(W) = Zlu,u™]

usually denoted simply ) wi e following properties.
lly denoted simpl ith the followi (2)
(a) Through the specialization ug j — exp (2imj/em) , the form T becomes the
canonical symmetrizing form on the group algebra of W.

b
(b) For all b € B, we have 7(b~1)V = 7(bm)

() where T = Ty (see 1.4.3).



34 CHAPTER 1. REFLECTION GROUPS, BRAID GROUPS, HECKE ALGEBRAS

3. If I is an intersection of reflecting hyperplanes of W, the restriction of Ty
to a naturally embedded parabolic subalgebra H(Wi, W) is the corresponding
specialization of the form Ty, .

4. The form T satisfies the following conditions.

(a) Forbe B, 7(b) is invariant under the action of Gy .

(b) As an element of Z[u,u~t], 7(b) is multi-homogeneous of degree Lz (b)
in the indeterminates {ug; | 1 =0,...,eg — 1} for all H € A(W). In
particular, we have

7)) =1 and 7(ww)= (—1)]\7"{5f H UH,;i -

HeA(W)
0<i<e—1
1.5.4. Splitting field. —

An irreducible complex reflection group in GL(V) is said to be well-generated if it
can be generated by dim (V') reflections (see e.g. [Brol0, §4.4.2] for more details).

The following theorem has been proved in [Mal99].
Theorem 1.61. —

Assume assertion (1) of Theorem—Conjecture 1.60 holds.
Let W be an irreducible complex reflection group, and let

|ZW| if W is well-generated,
my =
W | (Qw)| else.

Let us choose a W -equivariant set of indeterminates v := (vg,;) subject to the con-
ditions
VR = ot -
Then the field Quw (v) is a splitting field for H(W).
We denote by Irr(H(W)) the set of irreducible characters of
Qw(V)H(W) = Qw(v) Rz[u,u-1] H(W) ,
which is also the set of irreducible characters of
@(V)H(W) = @(V) ®Z[u,u-1] HW).

Following [Mal00, §2D], we see that the action of the group Gy on Z[u,u '] by
permutations of the indeterminates up ; extends to an action on Q[v,v~!]. Indeed,
we let Gy act trivially on Q and for all o € Gy we set

o(vg,;) =exp (2mi(o(j) — j)/emmw) ve,j .
That action of Gy induces an action on H(W), and then an action on Irr(H(W)) by
(1.62) o(x)(h) :== a(x(c™(h))) for o € Gy, hec HW), x € Irr(H(W)).
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1.5.5. Schur elements. —

The next statement follows from Theorem 1.61 by a general argument which goes
back to Geck [Gec93].

Proposition 1.63. —
Assume Theorem—Conjecture 1.60 holds.
For each x € Irr(H(W)) there is a non-zero Sy, € Zw[v,v 1] such that

S

x€lr(H(W)) ~X

The Laurent polynomials Sy, are called the generic Schur elements of H(W') (or of

Let us denote by S + SV the involution of Qu (v) consisting in

— )y = vy forall He AW),j=0,...,e—1,

— complex conjugating the scalar coefficients.
Note that this extends the previous operation A — \Y on Z[u,u~!] defined above in
1.5.3.

The following property of the Schur elements (see [ BMM99, 2.8]) is an immediate
consequence of the characteristic property (see Theorem 1.60(2)(b)) of the canonical
trace .

Lemma 1.64. —
Assume Theorem—Conjecture 1.60 holds.
Whenever x € Irr(H(W)), we have
7(m)
wy ()

where w, denotes the central character corresponding to x.

Sy(v)” =

X(v)7

1.5.6. About Theorem—Conjecture 1.60. —

We make some remarks about assertions (4) and (3) of 1.60.

Note that the equality 7(1) = 1 results from the formula 7(b=1)V = 7(bm)/7(m)
(condition (2)(b)) applied with b = 1. The same formula applied with b = w~! shows
that 7(7r) is an invertible element of the Laurent polynomial ring, thus a monomial.
Multi-homogeneity and invariance by Sy will then imply the claimed equality in
(4)(b) up to a constant; that constant can be checked by specialization.

Thus in order to prove (4)(b) (assuming (2)), we just have to prove multi-
homogeneity. It is stated in [BMM99, p.179] that (a) and (b) are implied by
[BMM99, Ass. 4] (which is the same as conjecture 2.6 of [MM10]), assumption
that we repeat below (Assumption 1.65).
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In [BM97] and [GIMOO], it is shown that 1.65 holds for all imprimitive irreducible
complex reflection groups.

Assumption 1.65. —
There is a section

W—Bwy,w—w

with image W, such that 1 € W, and for w € W — {1} we have 7(w) = 0.
Let us spell out a proof of that implication.

Lemma 1.66. —
Under Assumption 1.65, properties (4)(a) and (4)(b) of Theorem 1.60 hold.

Proof. —

By the homogeneity property of the character values (see e.g. [BMM99, Prop. 7.1,
(2)]), applied to the grading given by each function I, we see that for y € Irr(H(W))
and b € By, the value x(b) is multi-homogeneous of degree 7 (b).

From the definition of the Schur elements S,, it follows that 7(b) is multi-
homogeneous of degree [(b) if and only if the Schur elements S, are multi-homogeneous
of degree 0.

Let M be the matrix {X(W)}ycnrm(w)),wec Where C is a subset of W which con-
sists of the lift of one representative of each conjugacy class of W. Then the equation
for the Schur elements reads S = X - M ~! where S is the vector (1/Sy)xerrwy)
and X is the vector (1,0, ...,0) (assuming that C starts with 1). From this equation,
it results that the inverses of the Schur elements are the cofactors of the first column
of M divided by the determinant of M, which are multi-homogeneous of degree 0.
From the same equation, since X is invariant by Gy, it results that for o € Gy, we
have (see 1.62) o(Sy) = Sy (y), which implies that 7 is invariant by Gy . O

Note that, for the above proof, we just need the existence of C and not of W.

We now turn to assertion (3) of Theorem—Conjecture 1.60. The proof of unicity
of 7 given in [BMM99] using part (2) of Theorem-Assumption 1.56 applies to any
parabolic subalgebra of the generic algebra. Hence assertion (3) would follow from
the next assumption.

Assumption 1.67 —

Let By be a parabolic subgroup of By corresponding to the intersection of hyper-
planes I, and let 7wy be the corresponding element of the center of By. Then for any
b € By, we have 7(b=1)Y = 7(bmy)/7(7r).

From now on we shall assume that Theorem—Conjecture 1.60 holds.
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1.5.7. The cyclic case. —

For what follows we refer to [BM93, §2].

Assume that W = (s) C GL;(C) is cyclic of order e. Denote by s the corresponding
braid reflection in By . Let u = (u;)i=0,... .—1 be a set of indeterminates.

Then clearly there exists a unique symmetrizing form 7 on the generic Hecke algebra
H(W) of W (an algebra over Z[(uF"')i—o..._1]) such that

7(1)=1 and 7(s') =0 fori=1,...,e— 1.
This is the form from 1.60.

For 0 < i < e —1, let us denote by x; : H(W) — Q(u) the character defined by
xi(s) = u;. We set S;(u) := Sy, (u).

Lemma 1.68. —
The Schur elements S;(u) of W = (s) have the form

) o Uj — U o 1 i
Si(w) = ]1;[ uj  P(0,u) (tdtp(t’u)> s
where P(t,u) := (t —ug) - (t — Ue—1) .

Proof. —
The first formula is in [BM93, Bem. 2.4]. For the second, notice that we have

d 1 t—u,‘
- P(t;u) = P(0,u) > o Jl;[ p— Si(u).

i

O

The following Lemma will be used later. Its proof is a straightforward computation
(see Lemma 1.64).

Lemma 1.69. —
With the above motation, we have

Si(u)” = (*1)871%-_5(1:[ u;) Si(n) = —u; “P(0,u)5;(u) .

7
=0

1.6. ®-cyclotomic Hecke algebras, Rouquier blocks

We now consider specialized cyclotomic Hecke algebras involving only a single
indeterminate, x.

Let K be a number field, stable by complex conjugation A — A\*. Let W be a finite
reflection group on a K-vector space V of dimension 7.
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Let ®(x) be a K-cyclotomic polynomial — see Definition 1.48. We assume that
the roots of ®(z) have order d, and we denote by ¢ one of these roots.

1.6.1. ®-cyclotomic Hecke algebras. —

We recall that we set mg = |pu(K)|. We choose an indeterminate v such that
VMK = C_lx-

Definition 1.70. —

1. A cyclotomic specialization is a morphism o : Z[(u#ﬁ)Hﬁ] — K[v*!] defined as
follows:
There are
— a W-equivariant family (Cu i) (e A(W))(i=0.,...,er—1) 0f T00ts of unity in K,
— and a W-equivariant family (mm i) (ge A(W))(i=0.,...,en—1) Of rational num-
bers,
such that
(a) mgmpu,; € Z for all H and i,
(b) the specialization o is of the type o : ug,; — g L™K
2. A ®-cyclotomic Hecke algebra of W is the algebra

Hy = Ko @5 H(W)

defined by applying a cyclotomic specialization o : Z[(Uli{ll)Hz] — K[v*] to
the base Ting of the generic Hecke algebra of W, which satisfies the following
conditions:

For each H € A(W), the polynomial

erl
Py()(t) = [] (t —umi) € Z[u,uM[t]
i=0
specializes under o to a polynomial Py (t,x) such that
(CAl) Py(t,z) € K|t x],
(CA2) Py(t,z) =t" —1 (mod ®(z)).

Remark 1.71. —

1. It follows from Theorem 1.61 that the field K (v) is a splitting field for H,.
2. Property (2),(CA2) of the preceding definition shows that
(a) a ®-cyclotomic Hecke algebra H, as above specializes to the group algebra
KW through the assignment v — 1 (which implies z — ();
(b) the specialization of K[u,u™!] @z w-1) (W) to the group algebra KW
(given by ug; — (¢, for 0 < i < ey — 1) factorizes through its special-
ization to any ®-cyclotomic algebra.
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1.6.2. The Rouquier ring Rg(v). —

Definition 1.72. —
1. We call Rouquier ring of K and denote by Rk (v) the Zk -subalgebra of K(v)

Ri(v) = Zg[v,v™ !, (v" — 1):&1} .

2. Let o :up,j— Cu ;"% be a cyclotomic specialization defining a ®-cyclotomic
Hecke algebra H,. The Rouquier blocks of H, are the blocks of the algebra
RK(U)HJ.

Remark 1.73. —

It has been shown by Rouquier (cf. [Rou99, Th.1]), that if W is a Weyl group and
H, is its ordinary Iwahori-Hecke algebra, then the Rouquier blocks of H, coincide
with the families of characters defined by Lusztig. In this sense, the Rouquier blocks
generalize the notion of “families of characters” to the ®-cyclotomic Hecke algebras
of all complex reflection groups.

Observe that the Rouquier ring Rx (v) is a Dedekind domain (see [BKO03, §2.B]).

1.6.3. The Schur elements of a cyclotomic Hecke algebra. —

In this section we assume that Conjecture 1.60 holds.
Let us recall the form of the Schur elements of the cyclotomic Hecke algebra H,,
[BKO03, Prop. 2.5] (see also [Chl09, Prop.4.3.5]).

Proposition 1.74. —
If x is an irreducible character of K(v)H,, then its Schur element Sy is of the
form
Sy = my v H U (v)™x¥
N
where my € Zg, ay, € Z, V runs over the K-cyclotomic polynomials and (ny,v) s a

family of almost all zero elements of N.

The bad prime ideals of a cyclotomic Hecke algebra have been defined in [BK03,
Def. 2.6] (see also [MRO3], and [Chl09, Def. 4.4.3]).

Definition 1.75. —
A prime ideal p of Zx lying over a prime number p is o-bad for W, if there exists
x € Irr(K (v)Hy) with m,, € p. In this case, p is called o o-bad prime number for W.

Remark 1.76. —

In the case of the principal series of a split finite reductive group, that is, if W
is a Weyl group and H,, is the usual Hecke algebra of W — the algebra which will
be called below (see 3.44) the “I-cyclotomic special algebra of compact type” —, it
is well kown (this goes back, at least implicitly, to [Lus79] and [Lus82]) that the
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corresponding bad prime ideals are the ideals generated by the bad prime numbers
(in the usual sense) for W.

1.6.4. Rouquier blocks, central morphisms, and the functions ¢ and A. —

The next two assertions have been proved in [BK03, Prop. 2.8 & 2.9] (see also
[Ch109, §4.4.1]).

Proposition 1.77. —
Let x,¢ € Irr(K (v)Hy). The characters x and v are in the same Rouquier block
of He if and only if there exist

— a finite sequence Xo, X1, -+, Xn € IT(K(v)H,),
— and a finite sequence Y1, ..., pn of o-bad prime ideals for W

such that
L xo = x and xn = ¢,
2. forallj (1<j<n), wy, , =wy, modp;Re(v).
Following the notations of [BMM99, §6B], for every element P(v) € C(v), we call

— valuation of P(v) at v and denote by val,(P) the order of P(v) at 0,
— degree of P(v) at v and denote by deg,(P) the negative of the valuation of

P(1/v).
Moreover, as x = (v™X | we set
val, (P deg, (P)
val, (P(v)) 1= and deg, (P(v)) == —=7.
)= ) 8P = )
For x € Irr(K (v)Ho ), we define
S1(v) 51(v)
1.78 Gy 1= valy and A, :=deg, .
( ) X (SX(’U)) X (SX(U))
Remark 1.79. —

For W a Weyl group, the integers a, and A, are just those for the generic character
corresponding to x (see Notation 4.11 below).

The following result is proven in [BK03, Prop. 2.9].

Proposition 1.80. —
Let x, 9 € Irr(K (v)H,). If the characters x and v are in the same Rouquier block
of Hy, then

aX—I—AX:aw—f—Aw.



1.6. >-CYCLOTOMIC HECKE ALGEBRAS, ROUQUIER BLOCKS 41

For all Coxeter groups, Lusztig has proved that if y and 1 belong to the same
family, hence (by Remark 1.73) to the same Rouquier block of the Hecke algebra,
then a, = ay and A, = Ay. This assertion has also been generalized by a case by
case analysis (see [BKO03, Prop.4.5], [MRO03, Th.5.1], [Chl08, Th.6.1], and [Chl09,
84.4] for detailed references) to the general case.

Theorem 1.81. —

Let W be a complex reflection group, and let H, be a cyclotomic Hecke algebra
associated with W.

Whenever x,v € Irr(K (v)H,) belong to the same Rougquier block of Ho, we have
ay =ay and A, =Ay.






CHAPTER 2

COMPLEMENTS ON FINITE REDUCTIVE GROUPS

2.1. Notation and hypothesis for finite reductive groups

Before proceeding our development for complex reflection groups, we collect some
facts from the theory of finite reductive groups associated to Weyl groups. More pre-
cisely, we state a number of results and conjectures about Deligne-Lusztig varieties
associated with regular elements, Frobenius eigenvalues of unipotent characters at-
tached to such varieties, actions of some braid groups on these varieties, in connection
with the so-called abelian defect group conjectures and their specific formulation in
the case of finite reductive groups (see [Bro90, §6], and also [BM96]).

These results and conjectures will justify and guide most of the definitions and
properties given in the following paragraphs about the more general situation where
finite reductive groups are replaced by spetsial reflection cosets.

Let G be a quasi-simple connected reductive group over the algebraic closure of a
prime field F,,, endowed with an isogeny F such that G := G is finite.

Our notation is standard:

— § is the smallest power such that F? is a split Frobenius (this exists since G is
quasi-simple). We denote by © — x.F the action of F' on elements or subsets of
G.

— The real number ¢ (,/p raised to an integral power) is defined by the following
condition: F° defines a rational structure on Fgs.

— T is a maximal torus of G which is stable under I’ and contained in an F-stable
Borel subgroup of G, W is its Weyl group. The action on V := C®y X (T;) in-
duced by F is of the form gy, where ¢ is an element of finite order of Ny, vy (W)
which is 1-regular. Thus ¢ is the order of the element of Ngp,(v)(W)/W defined
by ¢. For w € W we shall also sometimes note ¢(w) := pwp~! = ?w.

We also use notation and results from previous work about the braid group of W
and the Deligne-Lusztig varieties associated to G (see [BM96], [DM13]).
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We use freely definitions and notation introduced in §1.4 above. Recall that for
a,d € N, (§ := exp(2mia/d), and let wy be a (j-regular element for W.

It is possible to choose a base point xy fixed by ¢ in one of the fundamental
chambers of W, which we do. Indeed, ¢ stabilizes the positive roots corresponding
to the F-stable Borel subgroup containing T; and consequently fixes their sum.

Since G is quasi-simple, W acts irreducibly on V, and so ([Del72] or [BS72]) the
center of the pure braid group Py is cyclic. We denote by 7 its positive generator.

Following [DMO6, §3], we choose all our paths satisfying the conditions of [DMO6,
Prop. 3.5]. This allows us to define ([DMO06, Def. 3.7]) the lift W C By, of W, and
the monoid By, generated by W. We denote w — w (resp. W ~— w) this lift (resp.
the projection W — W).

In particular, we choose a regular eigenvector z; of w¢ associated with the eigen-
value (7, and a path v in V™ from xy to x; satisfying those conditions.
Then, following §1.4.4 above:

— As in Lemma 1.55 and Lemma 1.57, we lift we to a path w, /4 (abbreviated
w) in V'8 from the base point xg to (wy)(xg) = wxg, we denote by ¢ the
automorphism of By defined by ¢, and we have a(wy), /¢ = Ad(w) - a(y) .

- If

we have p € By and p¢ = @,

— Both w and p belong to B,

We will work in the semi-direct product By}, x () where we have (wp)® = p and
(we)? = . We denote by By (we) (resp. Bjj,(we)) the centralizer of we in
Bw (resp. Bf).

We denote by B the variety of Borel subgroups of G and by 7T the variety of
maximal tori. The orbits of G on B x B are in canonical bijection with W, and we
denote B5B’ the fact that the pair (B, B’) belongs to the orbit parametrized by
weW.

The Deligne-Lusztig variety Xy, is defined as in [BM96, Déf. 1.6 and §6] (fol-
lowing [Del97]). It is irreducible; indeed, since wep is a root of 7, the decomposition
of w contains at least one reflection of each orbit of ¢, and the irreducibility follows
from [DMOG, 8.4], (it is also the principal result of [BRO6]).

Note that if w € W then the Deligne-Lusztig variety X, associated to the “braid
element” we is nothing but the classical Deligne-Lusztig variety

Xup = {B € B| B%B.F}

associated to the “finite group element” we. When a is prime to § and 2a < d, by
choosing for we the a-th power of the lift of a Springer element (see [BM96, 3.10
and 6.5]) we may ensure that w = w., ,/q € W.
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2.2. Deligne—Lusztig varieties attached to regular elements

We generalize to regular elements a formula of Lusztig giving the product of Frobe-
nius eigenvalues on the cohomology of a Coxeter variety.

In what follows we consider the usual Deligne-Lusztig variety X,,, (attached to
wy € GL(V)).

Proposition 2.1. —

Let wp be a (q-regular element of W, If Ty, is an F-stable mazimal torus of G
of type wy, we have
GT|

d
Xl =
Ty

ol
In order to proceed, we reformulate that proposition in terms which can be gener-

alized to complex reflection groups; the proof of that reformulation is then immediate
by Proposition 1.47(1).

Corollary 2.2. —
Let wy be a (4-regular element of We. We have

d — hy F
X0 | = dety (wp) ™' ¢ DegRS, -

Proof of 2.1. —
The proposition generalizes [Lus76, 3.3(ii)] and our proof is inspired by the argu-
ment given there.
We shall establish a bijection
X {B €B| BYB.F,B.F! = B}

we

(2.3) o
{(T,B) €eTxB|T.F=T,TcCB, B3>B.F} :

and the result will follow from counting the above set of pairs.

Let us check first that last implication. Notice that any maximal F-stable torus
T which is contained in a Borel subgroup B such that BSB.F is a torus of type
we (see [DLT6, §1]). Since all these tori of type wy are G'-conjugate to T, their
number is

G"l 1 |G
[Ner(T)| (W (we)| |TF|

To find the number of pairs (T,B) as above, we must multiply the above number
by the number of Borel subgroups B’ such that T C B’ and B'S3B’.F. Given B
such that T € B and B3B.F, any other B’ containing T is B’ = “'B for some

w' € W = Ng(T)/T, and BSB.F if and only if w’ € W(wy). Thus the number of

|G|
.
Toel

pairs (T, B) as above is




46 CHAPTER 2. COMPLEMENTS ON FINITE REDUCTIVE GROUPS

Now we establish the bijection (2.3).
1. We first show that, whenever B € iji, there exists a unique F-stable maximal

torus T such that, for all ¢ > 0, T c B.F".
Let B € X4, so that B 2 B.F). The sequence

(B,B.F,...,B.F?)

defines an element of the variety X ,a (associated with the “braid element mp?,
and relative to F'?) (see [BM96, §1]). Let B; be the unique Borel subgroup such that

B % B; =% B.F¢

where wy is the longest element of W, and such that (B, By, B.F 4) defines the same
element of X a as that sequence. Since B and B; are opposed, T := BN B; is a
maximal torus.
Let us prove that, for all i > 0, T C B.F".
— Assume first that i < |d/2].
If v :=wF(w)... F*"!(w), then the Borel subgroup B.F" is the unique Borel
subgroup B’ such that

. —1
B4 B 1 “B,.

Since such a Borel subgroup can be found among those containing T, i.e., a
Borel subgroup “'B for some w’ € W = Ng(T)/T, we have B.F? O T.
— Now assume i > [d/2]. Since B = B.F?, if we set now v := F'(w)F*(w) ... F©1(w),
we get similarly that the Borel subgroup B.F? is the unique Borel subgroup B’
such that

B, “' B 4B
and by the same reasoning we get that B.F* O T.

Since T = (), B.F", it is clear that T is F-stable.

2. Conversely, if (T, B) is a pair such that T is an F-stable maximal torus of type
wp and B D T, then B 2 B.F and B € Xf;;. Indeed, let as above (B,Bl,B.Fd)
define the same element of X 4 as (B,B.F,..., B.F9). Then each B.F? contains
T and by a reasoning similar as above, as either By = B.F%2 if d is even, or B is
defined by its relative position to its neighbours, in each case By contains T. As both
B and B.F? are the unique Borel subgroup which intersect B; in T, they coincide. [

2.3. On eigenvalues of Frobenius
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2.3.1. The Poincaré duality. —

Let us briefly recall a useful consequence of Poincaré duality (see for example
[Del77]) in our context.

Here ¢ is a power of a prime number p, and ¢ is a prime number different from p.

Let X be a smooth separated irreducible variety of dimension d, defined over the
field F, with ¢ elements, with corresponding Frobenius endomorphism F. Its étale
cohomology groups H*(X,Q,) and H!(X,Qy) are naturally endowed with an action
of F.

The Poincaré duality has the following consequence.

Theorem 2.4. —
For 0 <i < 2d, there is a natural non degenerate pairing of (F')-modules

HY(X, Q) x H*7H(X,Qq) — HX(X, Q).

For n € Z we denote by Q¢(n) the Qg-vector space of dimension 1 where we let F'
act by multiplication by ¢~".

Since, as a Q(F)-module, we have H2%(X,Q,) = Q(—d), the Poincaré duality
may be reformulated as follows:

For 0 < i < 2d, there is a natural non degenerate pairing of (F')-modules

H{(X,Qp) x H**7(X, Q) — Qu(—d).

2.3.2. Unipotent characters in position wep. —

In this subsection and the following until 2.9, w will be any element of B;FV such
that the variety Xy, is irreducible.

We will denote by Un(GY) the set of unipotent characters of G and by
Un(GF,we) those appearing in any of the (compact support) cohomology spaces
Hf (chpv @5)

We will denote by Id the trivial character of G, and by v* the complex conjugate
of a character ~.

Since the dimension of Xy, is equal to I(we), the Poincaré duality as stated above
(2.4) has the following consequences.

Proposition 2.5. —

1. The set of unipotent characters appearing in some (noncompact support) coho-
mology spaces H™(Xwep, Qo) is Un(GE, wep)*, the set of all complex conjugates
of elements of Un(G¥, wep).

2. For v € Un(GF,we), to any eigenvalue X of F° on the y-isotypic component
of H:(Xwe, Q) is associated the eigenvalue ¢ W) /) on the v*-isotypic com-
ponent of H*W)={(X Q).
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Remark 2.6. —

Note that 1 is the unique eigenvalue of minimal module of F? on H*® (Xw¢,@5)7
corresponding to the case where 7 is the trivial character in H°(Xwe, Q).

Indeed, by Poincaré duality it suffices to check that there is a unique eigenvalue of
maximal module, equal to ¢"(*#), in the compact support cohomology H, 2 (Xwes Qy).
This follows from the fact that only the identity occurs in g2we) (Xwe, Qr) since
Xwe is irreducible, and that the modules of the eigenvalues in H? (Xwe, Q¢) are less
or equal to ¢"/? (see for example [DMRO7, 3.3.10(i)]).

The next properties are consequences of results of Lusztig and of Digne—Michel
(for the next one, see e.g. [DMRO7, 3.3.4]).

Proposition 2.7. —
Let v € Un(GT,we). Let X be the eigenvalue of F° on the vy-isotypic component
of H(Xwe, Qr). Then A = ¢72)\., , where
— Ay is a root of unity independent of i and of we
— f =% for somen € N, and the image of f in Q/7Z is independent of i and of
we.

2.4. Computing numbers of rational points

We denote by H(W,z) the ordinary Iwahori-Hecke algebra of W defined over
Clz, 2 1]: using our previous notation, H(W, z) is the (z — 1)-cyclotomic Hecke alge-
bra such that, for all reflecting hyperplanes H of W, we have Py (t,z) = (t—z)(t+1).
Notice that H (W, x) is indeed an (z—1)-cyclotomic Hecke algebra for W at the regular
element 1.

We choose once for all a square root /z of the indeterminate z. Since the algebra
H(W, z) is split over C(y/z), the specialisations

V1 and x — (¢%/2)m/°
define bijections between (absolutely) irreducible characters:
Irr(H(W, ) «— Irr(W) and Irr(H(W, z)) <— Irr(H(W, ¢™))
for all m multiple of §. As a consequence, we get well-defined bijections
Irr(W) «— Irr(H(W, ™)),
L

The automorphism ¢ of By defined by ¢ induces an automorphism ¢, of the
generic Hecke algebra, and the field C(y/z) splits the semidirect product algebra
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HW, z) x (py) (see [Mal99]). Hence the above bijections extend to bijections
¢ = %m

between

— extensions to W x () of p-stable characters of W
— and extensions to H(W, ¢™) X (pgm) of @qm-stable characters of H (W, ¢™).

Each character x of the Hecke algebra H (W, z) defines, by composition with the
natural morphism By — H(W,x)*, a character of By,. If } is a character of
H(W,x) x (@), it also defines a character of By x () ; in particular this gives a
meaning to the expression x(we) for w € Byy.

For x a ¢-stable character of W we choose an extension to W x (¢) denoted y.
We define

R)Z = |W|71 Z X(U@)va,
veWw

where, for g € G and v € W,
Rvgo(g) = Z(—l)iTrace(g | HZ’(XUWQZ)) .

Notice then that, for v € Un(G¥, w¢) the expression
<’73 R)Z>GF)2qm (W‘P)
depends only on x and on «, which gives sense to the next result ((DMRO7, 3.3.7]).

Proposition 2.8. —
For any m multiple of § and g € GT', we have

X = Y A(g) Y (1 Re)arXen (we).
YEUN(GF ,wep) xEIrr(W)®

Let us draw some consequences of the last proposition when w satisfies the as-
sumptions of Section 2.1 (so that w = w 4/4).
Since by assumption we have (wep)? = wop?, it follows that

(29) chm(d,é) _ 71_(1.1(:m(d,6)/d )
By [BMM99, 6.7], we know that
(2.10) Xqm (71') = qm(l(”)_(ax""Ax)) = q”Ll(”)(l_(“x+Ax)/l(7f))

where, as usual, a, and A, are the valuation and the degree of the generic degree of
X (see Section 1.6.4). It follows that
(211) Ko (wep) = Rlwip)g ™0 (oA 1)

(the power of ¢ is given by the above equation and the constant in front by special-
ization).
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For all x such that (v, Rz)gr # 0 since the functions a and A are constant on
families, we have a,, = a, and A, = A,. So

(2.12) XU = 3 (7 Rwp)ar AT 0 (g)gm (e A (axt A0 Um)
YEUn(GF ,wep)

2.5. Some consequences of abelian defect group conjectures

The next conjectures are special cases of abelian defect group conjectures for finite
reductive groups (see for example [Bro01]).

Conjecture 2.13. —

1. HoM = @, yq HiXwep, Qo) and HE" == @, ..., H (Xwe, Qr) are disjoint
as GF-modules.
2. F° is semi-simple on H:(Xwep, Q) for alli > 0.

Let us then set

He(Xwy) := Endgr (@ Hg‘(xw,@l)> :
Comparing the Lefschetz formula

X9 = (~1)"Trace(gF™ | H:(Xwe, Qr))

with (2.12), we see that the preceding Conjecture 2.13 implies
L. there is a single eigenvalue Fr? := /\A/q&(w"’)(l_(“W"‘AW)/I(”)) of F% on the -

isotypic part of @, H!(Xwe, Qe)
2. F° is central in He(Xwe) -

. gF™
Since [Xg,

€ Q, the conjecture implies also:

a(Un(G",we)) = Un(G", we)

Vo € Gal(Q/Q), {Frc( = o(F)
olvy) — v/

By Poincaré duality, there is similarly a single eigenvalue Fr, of F' % attached to
on H*(Xy, Q) and since by Proposition 2.5(2) Fr,FrS. = Pl we) we get

(2.14) Fr, = )wqﬁl(wq:)(aﬁAw)/l(ﬂ).
We get similarly that

F? is central in " (Xwep) := Endgr <@ Hi(wa@e)) .

The next conjecture may be found in [BM93] (see also [BM96], [Bro01]).
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As in §2.4 above, we denote by w¢ a (j-regular element for W, which we lift as
in §3.1 above to an element w¢ such that w and p := (w¢)’ belong to B%7 and
p? = 7w, We denote by ® the d-th cyclotomic polynomial (thus ® € Z[z]).

Conjecture 2.15. —
The algebra H.(Xwy) is the specialization at x = q of a ®-cyclotomic Hecke algebra
Hw (we)c(x) for W (we) over Q, with the following properties:

1. Let us denote by 1, the corresponding specialization of the canonical trace of
Hw (wp)c(z) to the algebra He(Xwy). Then for v € By (wy), we have

Z(*l)itr(v, H'(Xug, Q) = Deg(R,)y(v).

a.lem(d,0)/d _ lem(d,5)/d

2. The central element
Flcm(d,(;).

p corresponds to the action of

Let us draw some consequences of Conjecture 2.15.

2.5.1. Consequence of 2.15: Computation of (7). —

The following proposition makes Conjecture 2.15 more precise, and justifies Con-
jecture 2.21 below.

Proposition 2.16. —

1. Assume that 2.15 holds. Assume moreover that a = 1 and that d is a multiple
of 6. Then

(1) = dety (wip) g™ = (¢
2. Assume that, for I € Aw(wyp), the minimal polynomial of s; on Hc(Xuwy) is
P;(t). Then
h —~ yp hy yp
[T P1(0) = (—1)Wlenrdety (wi) g7 = (—1)™W oo (¢ )0
IeAw (wep)

Proof. —

(1) By 2.15(2), the element 7 acts as F'? on the algebra H.(X,,). Hence by the
Lefschetz formula, we have

IXEL =Y (~D)ite(m, H (Xuwp, Q0))

K2

and hence by 2.15 we find
d
|X7};<p| = Deg(RSga)Tq(ﬂ) .
Now by 2.1, we have
Xl = dety (wp) g™ Deg(RE,)

which implies the formula.
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(2) By [BMM99, 2.1(2)(b)], we know that
ry(m) = (=)™ T Pr0),
TeAw (wy)

which implies the result. O

2.5.2. Consequence of 2.15: Computation of Frobenius eigenvalues. —

Recall that there is an extension L(v) of Q(z) which splits the algebra Hy (we).(x),
where L is an abelian extension of Q and v* = (~'a for some integer k.

Choose a complex number (¢~ 1q)/*.
Assume Conjecture 2.15 holds. Then all unipotent characters in Un(G¥', we) are

defined over L[(¢~1q)/*], and the specializations
v+ 1 and v ((Tlg)V/E
define bijections
I (W (we)) ¢ Trr(H(Xuwg, Q) ¢— Un(G, we)
{ X P Xg = Wx

Remark 2.18. —

It is known from the work of Lusztig (see e.g. [Gec05] and the references therein)
that the unipotent characters of G are defined over an extension of the form L(q'/?)
where L is an abelian extension of Q.

(2.17)

Recall that Fr, denotes the eigenvalue of F % on the Yx-isotypic component of
H*(Xwe, Q). By 2.15(2), we have
Fr};:;n(d,é)/é = wy, (p)lcm(d,é)/é )

Since the algebra Hy (wy).(x) specializes

— for & = (, to the group algebra of W (we),
— and for z = ¢, to the algebra H.(Xw),

we also have
Wy, (P) = wy(p)(CTa)™
for some ¢, € N/2.
Comparing with formula 2.14 we find
ey = 0l(we) (1 = (aq, + Ay )/U(m)) = (ew — (ay, + Ay, ))da/d,

which proves:

Proposition 2.19. —
Whenever we is (§-reqular and x € Irr(W(wy)), if v denotes the corresponding
element in Un(G¥, we) we have

A}yc;n(d,zs)/5 _ wx(p)lcm(d,é)/écf(ew7(a.yX +Ay, )lem(d,6)a/d )
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2.6. Actions of some braids

Now we turn to the equivalences of étale sites defined in [BM96] and studied also
in [DM13]. For the definition of the operators D, we refer the reader to [BM96].

Theorem 2.20. —
There is a morphism

B, (wp) = Endgr (Xwe)
v D,
such that:
1. The operators Dy are equivalences of étale sites on Xy

The next assertion has only been proved for the cases where W is of type
A, B or Dy [DMO6]. It is conjectural in the general case.

2. The map v — Dy, induces representations
Pc @EBW(WS") - HC(XWLP) and p: QZBW(WSD) - H(chp) .

3. Diweys = F°.

2.6.1. More precise conjectures. —

The next conjecture is also part of abelian defect group conjectures for finite reduc-
tive groups (see for example [Bro01]). It makes conjecture 2.15 much more precise.
Results similar to (CS) are proved in [DMRO07] and [DMO06] for several cases.

Conjecture 2.21. —
COMPACT SUPPORT CONJECTURE (CS)

1. The morphism p. : QBw (wep) — He(Xwe) is surjective.
2. It induces an isomorphism between H.(Xw,) and the specialization at © = q of
a ®-cyclotomic Hecke algebra Hy (wp)c(z) over Q at we for W(wep).

NONCOMPACT SUPPORT CONJECTURE (NCS)

1. The morphism p : QBw (wep) — H(Xwy) is surjective.
2. It turns H(Xwe) into the specialization at x = q of a ®-cyclotomic Hecke algebra
Hw (we)(x) over Q at wp for W(wep).
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2.6.2. Consequence of 2.21: noncompact support and characters in
Un(GF,wep). —
We refer the reader to notation introduced in 2.5.2, in particular to bijections 2.17.
We can establish some evidence towards identifying H(Xw,) with a cyclotomic
Hecke algebra of noncompact type. For example, we have the following lemma. We
denote by A(wyp) the set of reflecting hyperplanes of W (wy) in its action on V(wey).

Lemma 2.22. —

Assume that H(Xwe) is the specialization at x = q of a cyclotomic Hecke algebra
for the group W (wyp).

Then whenever I € A(wyp), the corresponding polynomial Pr(t, x) has only one root
of degree 0 in x, namely 1. If sy is the corresponding braid reflection in By (we),
this root is the eigenvalue of Ds;, on H°(Xye, Qr).

Proof. —

Let x € Irr(W(wy)) be a linear character, thus corresponding wvia 2.17 to a linear
character x4 of H(Xwy). Let I € A(wy), and let s; be the corresponding braid
reflection in By (we). Let us set ur j, := xq(sr) so that ur;, = &1 ;,¢™"71 where
1.4, is a root of unity and my j, is a rational number.

The element p = (we)? is central in By (w¢). Since W (we) is irreducible (see
for example [Brol0, Th. 5.6, 6]) it follows that there exists some a € Q such that

aey

Xq(p) = x(p) | | ut, -
I

Now x4(p) is the eigenvalue of F° on the Yx-isotypic component of H® (X, Qo),
and we know (see Remark 2.6 above) that there is a unique such eigenvalue of min-
imum module, which is 1, corresponding to the case where « is the trivial character
in HO(XWQQ, @z)

It follows that there is a unique linear character x of W (w¢) such that x,(s) has
minimal module for each braid reflection s. Since Dy acts trivially on H O(qu,, Qv)
we have x4(s) = 1, so the unique minimal my ;, is 0. O

2.7. Is there a stronger Poincaré duality ?

We will see now how (CS) and (NCS) are connected, under some conjectural ex-
tension of Poincaré duality.

Conjecture 2.23. —
For any v € By (we) and any n large enough multiple of §, Poincaré duality holds
for Dy (weyn, i-e., we have a perfect pairing of Dy (we)»-modules:

H! (X, Qo) x H¥WO)=H(X 0, Q) — HZ W) (X, Qi) -
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Remarks 2.24. —

1. First note that for n large enough v(wep)™ € B, (w¢), so there is a well-defined
weyn- Indeed, since (wip)™ is a power of 7 for n divisible enough,
the element v(we)" is positive for n large enough.

2. The Lefschetz formula which would be implied by 2.23 at least holds. Indeed,
Fujiwara’s theorem (see [DMRO7, 2.2.7]) states that when D is a finite morphism and
F' a Frobenius, then for n sufficiently large DF™ satisfies Lefschetz’s trace formula ;
this implies that, for n large enough and multiple of §, the endomorphism Dy (v )n
satisfies Lefschetz’s trace formula, since D(yys = F 9 is a Frobenius.

3. Conjecture 2.23 implies that Dy acts trivially on H%(Xe, Qr).

endomorphism Dy

The following theorem is a consequence of what precedes. It refers to the definitions
introduced below (see Def. 3.7), and the reader is invited to read them before reading
this theorem.

Theorem 2.25. —
Assuming conjectures 2.18, 2.21, 2.23,

1. the algebra H.(Xwy) s a spetsial ®-cyclotomic algebra of W at we of compact
type, and the algebra H(Xwy) is a spetsial -cyclotomic algebra of W at we of
noncompact type,

2. He(Xwe) is the compactification of H(Xwe), and H(Xwy) is the noncompact-
ification of He(Xwe)-

We can give a small precision about Conjectures 2.21 (which will be reflected in
Definition 3.7 below) using now the strong Poincaré Conjecture 2.23.

Lemma 2.26. —

Assume 2.23 and 2.18, and assume that H.(Xwe) is the specialization at x +— ¢
of a (-cyclotomic Hecke algebra of W (we).

Let I be a reflecting hyperplane for W(wy), and if s; denotes the correspond-
ing braid reflection in By (we), let us denote by vy the eigenvalue of Ds on

HEZ(W‘P)(XW¢,Qg). Assume that vy = A;q™' where \; is a complex number of
module 1 and my € Q is independent of q.

Then A\f = 1.
Proof. —

From 2.23 and 2.22 we get that v; is the unique eigenvalue of maximal module
of Ds, on H?(Xywe); the eigenvalue of F° on HA ™ (Xwes Q) is also the unique
eigenvalue of maximal module (equal to ¢%(®)).

As remarked in 2.24 2., for sufficiently large m multiple of J the endomor-
phism D y» satisfies the Lefschetz fixed point formula. Its eigenvalue on

21
H:

sr(we

(w)(XW(P,Qg) is A7q"™7¢®™ () and this is the dominant term in the Lefschetz
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formula. Since the formula sums to an integer, this term must be a real number, thus
Ar=1. O

Remark 2.27 —

Note that the assumption of the previous lemma on the shape of v; is reasonable
since we believe that it suffices to prove it in the case where W (we) is cyclic, and in
the latter case Dy is a root of F.

Incidently, assume that W (wy) is cyclic of order ¢, and let s be the positive gen-
erator of By (we). Since (wg)® is a power of s, we get (comparing lengths):

acd

s = (we)’.



CHAPTER 3

SPETSIAL ¢-CYCLOTOMIC HECKE ALGEBRAS

Leaning on properties and conjectures stated in the previous paragraph, we define
in this section the special type of cyclotomic Hecke algebras which should occur as
building blocks of the spetses: these algebras (called “spetsial cyclotomic Hecke alge-
bras”) satisfy properties which generalize properties of algebras occurring as commut-
ing algebras of cohomology of Deligne-Lusztig varieties attached to regular elements
(see §3 above).

Let K be a number field which is stable under complex conjugation, denoted by
A — A*. Let Zg be the ring of integers of K.

Let V be an r-dimensional vector space over K.

Let W be a finite reflection subgroup of GL(V') and ¢ € Ny vy (W) be an element
of finite order. We set G := (V, Wy).

3.1. Prerequisites and notation

Throughout, wy € Wy denotes a regular element. If wy is (-regular for a root of
unity ¢ with irreducible polynomial ® over K, we say that wep is ®-regular.
We set the following notation:
- V(wy) := ker ®(wy) as a K[xz]/(P)-vector space,
W (wy) := Cw (wy), a reflection group on V(we) (see above Theorem 1.50(5)),
- A(wy) is the set of reflecting hyperplanes of W (we) in its action on V(wy),
- ew (W) = ew (wy) -
Note that K[z]/(®) contains Qyy ().
The next theorem follows from Springer-Lehrer’s theory of regular elements (see
e.g. [Brol0, Th. 5.6]).

Theorem 3.1. —
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Assume that W is irreducible. If we is regular, then W (wep) acts irreducibly on
V(wep).

3.2. Reduction to the cyclic case

We relate data for W(we) with local data for Wi(we), I € A(wy).

So let I € A(wyp). We denote by W; the fixator of I in W, a parabolic subgroup of
W. The element wy normalises the group W; (since it acts by scalar multiplication
on I), and it is also a ®-regular element for W;. Moreover, the group W;(wey), the
fixator of the hyperplane I in W (we), is cyclic.

Thus we have a reflection coset

Gy := (V,Wrwy).

Note that
AW ={Hec AW) HNV(wp)=1}.

The “reduction to the cyclic case” is expressed first in a couple of simple for-
mulz relating “global data” for W to the collection of “local data” for the family
(W) reA(we), such as:

AW) = |_| A(W7p), from which follow

(3 2) Ie A(wy)
’ T T h, h;
Nigt= > Nih, NP = Y NgPoew= ) ew,.
Ie A(weyp) IeA(wyp) Ie A(wep)
Jw= ]| Jw, from which follows
Te A(we)
(3.3) )

—~ (Wr)
(wp) =[] dety (wy).
IeA(weyp)

—~ W
dety,
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Notice the following consequence of (3.2), where we set the following piece of no-
tation:
ew; (w(p) = CWr(we) s

which we often abbreviate ej.

Lemma 3.4. —

1. Whenever I € A(wy), ew, (wy) divides ey, .
2. Assume that there is a single orbit of reflecting hyperplanes for W (wy). Then
ew (wy) divides ey .

Proof. —

(1) Consider the discriminant for the contragredient representation of W on the
symmetric algebra S(V*) of the dual of V' (see 1.1.2 above), which we denote by
Discyy,. With obvious notation, we have

Discly = JiyJiy | = H (Jr)"-
HeA(W)
By restriction to the subspace V(wy), we get
Disciylvwe =[] GD™
IeA(wyp)

Since Discyy is fixed under W, Discyy |y (wy) is fixed under W (we). Since Discyy, is a
monomial in the j7’s, it follows from [Bro10, Prop.3.11,2] that Discyy |y (w,) must be
a power of the discriminant of Wj(we), which shows that ew, (wy) divides ew, .

(2) If all reflecting hyperplanes of W (w¢y) are in the same orbit as I, the relation
EW = Y reA(wp) €W May be written in W and in W(wyp) as

h h
ew = Nyl ew, and ew(wp) = Ny ew, (we),

from which it follows that

W _ Wi o,
ew(we)  ew, (wp)

Remark 3.5. —

The conclusion in (2) of Lemma 3.4 need not be true in general. For example,
consider the case where W = G5 (in Shephard—Todd notation), and let w be a 2-
regular element of W. Then W(w) = G5. It follows that ey = 36 and ew (w) = 24,
so ey (w) does not divide eyy. Note that G5 has two orbits of reflecting hyperplanes.
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Remark 3.6. —

As a special case, assume that we started with a split coset i.e., ¢ € W, and assume
that W acts irreducibly on V. Let us denote by d the order of the regular element w
of W.

Then by Theorem 3.1 W (w) acts irreducibly on V(w), hence its center ZW (w) is
cyclic. Let us choose a generator s of that center. Then we have

1. s is regular (since s acts as scalar multiplication on V(w))
2. W(s) =W(w).

3.3. Spetsial ¢-cyclotomic Hecke algebras at wyp

3.3.1. A long definition. —
We still denote by ® the K-cyclotomic polynomial such that ®(¢) = 0, where wep

is (-regular and ¢ has order d.
Notice that, by definition

— we acts on V(wy) as a scalar whose minimal polynomial over K is @,

Definition 3.7. —

A spetsial ®-cyclotomic Hecke algebra for W at we is a K[z, 2z~ ]-algebra denoted
Hw (we), specialization of the generic Hecke algebra of W(we) through a morphism
o and subject to supplementary conditions listed below:

There are

- a W(wyp)-equivariant family (Cr.j) re A(we),j=0,....e;—1 0f elements of p,, ,
- a W(wep)-equivariant family (mr j)re A(wy),j=0,....,e;—1 0f nonnegative elements

of WZ )
such that o : ur; v+ Cr vl ZWImii where v is an indeterminate such that v/ZW! =
¢z, with the following properties.
For each I € A(wy), the polynomial H;I:?)l(t — ur ;) specialises to a polynomial
Py (t,x) satisfying the conditions:
(cal) P(t,z) € KW(wup) [t7:L'] ,
(cA2) Pr(t,z) =t —1 (mod P(x)),
and the following supplementary conditions.
GLOBAL CONDITIONS
(RA) The algebra Hyy (we) splits over Ky () (v).
(sc1) All Schur elements of irreducible characters of Hw (we) belong to Zy [z, x~1].
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(sc2) There is a unique irreducible character xo of Hw (we) with the following prop-
erty: Whenever x is an irreducible character of Hw (we) with Schur element
Sy, we have Sy, /Sy € K[z]. Moreover, xo is linear.
(sc3) Whenever x is an irreducible character of Hyw (we) its Schur element Sy, divides
FegG(RSW) in Kz, z71].
For x an irreducible character of Hw (wp), we call generic degree of x the
element of K[x] defined by

Fegg (R5,)
Deg(x) = — g
X

LOCAL CONDITIONS

Whenever I € A(wyp), let us denote by Hw,(wp) the parabolic subalgebra of
Hw (wy) corresponding to the minimal parabolic subgroup Wi(wp) of W(wp). We
set Gy := (V,Wrwy). The following conditions concern the collection of parabolic
subalgebras Hw, (wp) (I € A(wyp)).

The algebras Hw, (we) have to satisfy all previous conditions (CAl), (CA2), as
well as conditions (RA), (scl), (sC2), (sc3) that we state again now, plus

— for the noncompact support type, conditions (NCS1), (NCs2), (NCS3) stated

below,
— for the compact support type, conditions (csl), (cs2), (cs3) stated below.

COMMON LOCAL CONDITIONS

Notice that the following conditions impose some properties of rationality to the
local algebra Hy, (wp) coming from the global datum G = (V, We).
(RA7) The algebra Hw, (wep) splits over Ky (,)(v), (where v is an indeterminate such
that v1#WI = ¢~1z).
(scly) All Schur elements of irreducible characters of Hy, (wp) belong to Zy |z, ™.
(sc2r) There is a unique irreducible character x& of Hw, (wy) with the following prop-
erty: Whenever x is an irreducible character of Hw, (wy) with Schur element
Sy, we have S,1 /Sy € K|z]. Note that since Wy(wep) is cyclic, X4 is linear.
(sc3;) Whenever x is an irreducible character of Hy, (wep) its Schur element divides
Fegg (RGL)-

We set e := ey = ew, (wy).
Let us define a1(x), ..., ac(x) € Kywwy[z] (the aj(x) depend on I) by
Pr(t,z) =t —ay (@)t + -+ (=1 (z) .
NONCOMPACT SUPPORT TYPE (NCS)
We say that the algebra is of noncompact support type if
~esoy Pr(t,x) € K[t, ],
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(~es1) 1 4s a root of Pr(t,x) (as a polynomial in t) and it is the only root which has
degree 0 in x. In particular a;(0) = 1.

(Nes2) The unique character X} defined by condition (3C2;) above is the restriction of
Xo to Hw, (wp), and is defined by

Xé(s;) =1.

In other words, xo defines the trivial character on By (wy).
~es2y We have

Syo(@) = (¢2)~ W Feg(RS,)(z),
S (x) = (¢ ') MW Feg(REL) (x)

Xo
and in particular
Deg(xo)(x) = (o)™
esy) Pr(0,2) = (—1)¢ae(z) = —(¢ ') Wi .
COMPACT SUPPORT TYPE (CS)
We say that the algebra is of compact support type if
(cso) For j =1,...,e, we have (/™ a;(x) € K|z].
sty There is only one root (as a polynomial in t, and in some field extension of
K(x)) of Pr(t,x) of highest degree in x, namely (Cilx)% .
(cs2) The unique character x§ defined by condition (SC25) above is the restriction of
Xo to Hw, (wy), and is defined by
xh(sn) = (o)
(cs2y We have
Sxo = Feg(Ry,)
Syy = Feg(RyL)

and in particular
Deg(xo)(z) = 1.

hyp

(ess) Pr(0,2) = (—1)%ac(z) = —(¢ ) wr .

3.3.2. From compact type to noncompact type and vice versa. —
Let us first state some elementary facts about polynomials.
Let P(t,z) = t¢ — ay(x)t* 1 + -+ + (=1)%(z) € K]|t,z] such that P(t,z) =
H]e;é (t — ;) , where the \; are nonzero elements in a suitable extension of K (z).
Assume that P is “(-cyclotomic”, i.e., that P(t,{) =t¢ —1.
Choose an integer m and consider the polynomial

e

P(0,2)

Pt z) = Px™t ' 2).
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Then
e—1
=0
and
PIMI(t,¢) = ¢me((¢Tm)° - 1)
Define
te
[m(] . /—mep[m]m _ 1 Nma—1
We have
e—1
plmi] (t,x) = H(t _ (Cilx)m/\j_l) 7
=0
and

pmelt ¢y =t —1.

Note that P(t,z) — PU™<(t, ) is an involution. Write P™<(¢t, x) = t¢ — by (z)tc~ ! +
o (—1)%be() -

Remarks 3.8. —
1. If the highest degree term of a;(z) is ((~'x)™, then b;(0) = 1, and if a;(0) =1
then the highest degree term of by (z) is (¢~ 'z)™.
2. If Pr(0,2) = f(gflx)N‘r"%, then PI[EW’/CI’G(O,:L’) = 7(C71$)N;“}’I‘)7 and wvice
versa.

Let us prove (2). By definition of P[™<l(¢, z), we have P™<1(0,z) = (¢~ 'z)*™ P(0, x),
whence

plewi/end(, z) = (¢ 1)W1 P(0, ).
— ref hyp s — _(r—1 N:;i s —
Now ew, Ny, + Ny©, so if P(0,) (¢ tax) (resp. if P(0,z)
hyp hyp
—(C_lx)NW{ ), we see that Plewr/¢1<(0, ) = —(C‘lx)NWI (respectively Plewr/er-¢l(0, z) =
—(¢ )N,

The following lemma is then easy to prove. It is also a definition.

Lemma 3.9. — Assume given a W (w)-equivariant family of polynomials (Pr(t,)) e A(wy)
in K[t,x].
e

For I € A(wyp), set my := —2L. Then:
er

L. If the family (Pr(t,x))rcAwy) defines a “spetsial ®-cyclotomic Hecke al-
gebra Hw (wp) of W at we of compact support type” then the family
(PI["”’C] (t,)) e A(wy) defines a “spetsial ®-cyclotomic Hecke algebra Hif (we)of
W at we of noncompact support type”, called the “noncompactification of
Hw (we)”.
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2. If the family (Pr(t,z))reawy) defines a “spetsial ®-cyclotomic Hecke al-
gebra Hw (wp) of W at we of noncompact support type” then the family
(Pl[m“q (t,2)) reA(wy) defines a “spetsial ®-cyclotomic Hecke algebra Hy, (wep)
of W at we of compact support type”, called the “compactification of Hw (wep)”.

3.3.3. A normalization. —

Let Hy (wep) be a spetsial ®-cyclotomic Hecke algebra of W at wep of noncompact
type, defined by a family of polynomials (Pr(t,x))rcaqwy). We denote by Hiy (we)
its compactification, defined by the family (PI[mI’C] (t, %)) re A(we)-

In the case where W is a Weyl group, the spetsial ®-cyclotomic algebras Hy (wep)
and M, (we) should have the following interpretation for every choice of a prime
power ¢ (see §3 above).

There is an appropriate Deligne-Lusztig variety Xy, endowed with an action of
the braid group By (w¢p) as automorphisms of étale sites, such that

— (Noncompact type) the element s; € By (we) has minimal polynomial Py(t,q)
when acting on H*(Xw,, Qr),

— (Compact type) the element (="' s; has minimal polynomial PI[mI <) (t,q) when
acting on H? (Xwe, Q).

Remark 3.10. — It results from (CA2) in definition 3.7 that the set {(s ;}; is equal
to p,,, but we have not yet chosen a specific bijection, which is how the data may
appear in practice — see the second step of algorithm 5.4. We now make the specific

choice that (7 ; = (] ; such a choice determines the indexation of the characters of
Hw (we) by those of W(wa).

With the above choice, we have Py (t,z) = (t—1) []¢.;" (t = ¢, (¢ ta)™r7) (where

J=1
myr; >0forallj=1,...,e;—1, see (NCS1)), and we see that the minimal polynomial
of sy on H?(Xwe, Q) is then
6[71
Pilt ) = (e = am) T (0= ¢migi(ctaymemes)
j=1

The polynomial ﬁ;(t,x) is cyclotomic (i.e., reduces to t* — 1 when z — () if and
only if ("™ € p,,. That last condition is equivalent to

Wi =1 e, Ay, (wp)=1.
Let us denote by ﬁf,v(wgo) the specialisation of the generic Hecke algebra of W (w¢)

defined by the above polynomials 15[(15, x).
The following property results from Lemma 1.10.

Lemma 3.11. —
If G = (V, W) is real, then the algebra H, (we) is ®-cyclotomic.
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3.3.4. Rationality questions. —
A spetsial ®-cyclotomic Hecke algebra for W(we) over K is split over K(¢)(v)
where v is an indeterminate such that v/#"| = ¢=1z, by Def. 3.7 (RA).
Since p 7y € K, the extensions K(¢,v)/K () and K (v)/K(¢™'z) are Galois.
For I € A(wyp), let us set

er—1 er—1
Pr(to) = [ (¢ = ¢ ¢ty = T (6= ¢ ome),
j=0 j=0
with
my ; ) where nr; € Z.

~lzw]
Since Py (t,z) € K(x)[t], its roots are permuted by the Galois group Gal(K (¢, v)/K((, x)).
Let us denote by g € Gal(K(¢,v)/K (¢, 7)) the element defined by g(v) = (zwv.

Since g permutes the roots of Py, there is a permutation o of {0,...,er — 1} such
that
o(CL ™) = (Lt = GO
and so
(3.12) niog) =nr; and (I9) = CgleZIﬁJﬂ :

Remark 3.13. — By Equation 3.12, we see that if j is such that my; # my j for
all j' # j, then o(j) = j, which implies that ¢J = gICFZI"/{}I, hence that n;; is a
multiple of [ZW], and so m; ; € Z.
By (SC1), the Schur elements of Hyy, (wp) (see 1.68)
1 d
S; = —— [ t—=P(¢t i oI
7 P(0,2) ( dt ( ,x)) |t:<€1” 1

belong to K[z], hence are fixed by Gal(K (¢,v)/K(¢,x)), i.e., we have S,(;y = S, or,

in other words

d d
(314) (tdtp(t,.f)) |t:<gICTZI{/IJ/.‘U”I’j = (tdtp(t,l’)) ‘tzcglvﬂl,]‘ .

3.3.5. Ennola twist. —

Let us choose an element in W N ZGL(V), the scalar multiplication by ¢ € u(K).
Then the element cwy is ® (¢~ x)-regular, and we obviously have W (cwy) = W (we).

Assume given a W (wep)-equivariant family (Pr(t,z))rea
K|t,z]. For I € A(wyp), set

(e.Py)(t, ) := Pr(t,e 'x).

wy) Of polynomials in

Note that the map P +— .P is an operation of order the order of e.
The following lemma is also a definition. Its proof is straightforward.

Lemma 3.15. —
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(cs) Assume that the family (Pr(t,x))rcawy) defines a spetsial ®-cyclotomic Hecke
algebra Hw (wp) of W at we of compact support type.

The family ((e.Pr)(t, %)) rc.a@wy) defines a spetsial (e~ x)-cyclotomic Hecke
algebra of W at ewp of compact support type, denoted €. Hy (wp) and called the
Ennola e-twist of Hw (we).

(ncs) Assume that the family (Pr(t,x))rcawwy) defines a spetsial ®-cyclotomic Hecke
algebra Hw (wp) of W at wp of noncompact support type .

The family ((e.Pr)(t, %)) 1ca@wy) defines a spetsial (e~ x)-cyclotomic Hecke
algebra of W at ewy of noncompact support type, denoted by . Hw (wp) and
called the Ennola e-twist of Hw (we).

Remark 3.16. —

Assume that Hy (we) is split over K(¢)(v) for some k such that k|mg and v* =
¢~ 'z. Then we see that e.Hyw (wyp) is split over K () (ve) if voF = e~1("1a.

Thus the field K (/% v) splits both Hyy (wyp) and e Hyw (wep).

3.4. More on spetsial ®-cyclotomic Hecke algebras

Let Hw (wep) be a spetsial ®-cyclotomic Hecke algebra attached to the (-regular
element wep.
Note that, unless specified, Hy (wy) may be of noncompact type or of compact

type.

3.4.1. Computation of w,(7) and applications. —

Choose a positive integer h and an indeterminate v such that v" = (=2 and such
that Hw (wy) splits over K (v).

Whenever x is an (absolutely) irreducible character of Hy (wyp) over K(v), we
denote by x,=1 the irreducible character of W(w¢p) defined by the specialization
v 1.

We denote by o, the sum of the valuation and the degree of the Schur element (a
Laurent polynomial) S, ().

Since Sy (z) is semi-palindromic (see [BMM99, §6.B]), we have

Sy (z)¥ = (Constant).z =% S, (z) .
We have (see Lemma 1.64, assuming 1.60)

7(m)

Sy(z).
Wy (71') X( )
From what precedes and by comparing with the specialization v — 1 we get

(3.17) wy () = v"oxr(m) = (Cla)7xr ().

Sx(x)v =
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— Now in the NCS case we have 7(m) = (¢~ 1z)MW = phNi¥'
— while in the CS case we have () = (¢~ 12)MW" = phNw"
from which we deduce
Proposition 3.18. —
1. In the NCS case, wy(m) = (¢~ 1) N Fox = ph(Ni'+oy)
2. In the CS case, wy (m) = (¢~1a)Nw'+ox = ph(Ny"+ox)

Assume that the algebra Hy (we) is defined over K (x) by the family of polynomials

er—1

Pr(t,z) = [T (t=¢Zo"mm)
7=0 I€Aw (we)

of Kyy(we)[t, z] and that it splits over K(v). We set
N{ﬂ{if if Hyw (wy) is of noncompact type,
NW =
N‘}/l‘}'p if Hw (we) is of compact type.
Any specialization of the type v — A where A is an h-th root of unity defines a
bijection
{ Irr (Hw (wp)) — Irr (W (we))

X = Xv=X >
whose inverse is denoted

Irr (W (we)) — Irr (Hw (we)) ,
0 00

Lemma 3.19. —
Let x € Irr(Hw (wy)).

1. Let p € ZBw (wy) such that p" = w* for some a,n € N. Then
hNw + oy)a/n € Z.
If moreover x is rational over K (z), we have
(Nw +o0y)a/n € Z.
2. Whenever X is an h-th root of unity, then
W (p) = Wy () (A Ho) MW FE)
In particular,
Wx(p) = wy,y (p)O" W HRILT,
3. We have
Wy (p) = AMEWHRI g, (p).
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Proof of 3.19. —

By Proposition 3.18,

wy(m) = pMNwHox)

Since p™ = 7, it follows that, whenever A € K, we have
(*) wy(p) = k(A TLo)PNwFeda/n for some k € K .

Since the character x is rational over K (v), wy(p) € K(v), which implies h(Nw +
oy)a/n € 7.

If y is rational over K (z) we have w, (p) € K (z), which implies (Nw +0y)a/n € Z.
This proves (1).

As M =1, by specializing v — X in (*) we find k = wy,_, (p).

Assertion (3) follows from the equality

wy(p) = wy,_y ()N o)W — o (p)ot (N re)aln

3.4.2. Compactification and conventions. —

Assume now that Hy (wep) is a spetsial ®-cyclotomic Hecke algebra attached to
the (-regular element we, of noncompact type, defined by the family of polynomials
(Pr(t, ) re Ay (we) With

6171

Pr(t,x) = [ (¢ = ¢, (¢ ayma).

j=0
Some notation.
For I € Aw (wyp), we denote by sy the braid reflection around I in By (wyp), and
by T; the image of sy in Hy (wg). Thus we have

eI—l

[T -,y =o.

§=0
The map sy — T extends to a group morphism
Bw (we) = Hw(we)*, b Ty.
We denote by xo the unique linear character of Hy (wg) such that (see 3.3.1)

ref
Sxo(@) = ((T'a) "MW Feg(RE,) (x) .
Let us denote by #Hf, (wy) the compactification of Hyw (wg). By definition,
Hiy (we) is generated by a family of elements (77 )7e 4,y (wy) Satisfying
j=er—1

I @5 -c¢ ¢ taym—mr) =o,

Jj=0
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where my := ey, /er. The map sy — T5 extends to a group morphism
Bw (wp) — Hiy(we)™, b Ty .
We denote by xo, the unique linear character of H$, (wy) such that (see 3.3.1)
Sxo.. = Feg(Ruwy) .
For the definition of the opposite algebra H$, (wy)°P, the reader may refer to
[BMM99, 1.30].

Finally, we recall (see introduction of Section 2) that for P(x) € K[z, 2], we set
P(x)Y = P(z71)*.

Proposition 3.20 (Relation between Hyy (wy) and Hy, (wyp))

1. The algebra morphism
Hw (wp) = Hiy (wp)™
defined by
Ty (¢ ta)™ (1)~
s an isomorphism of algebras.
2. There is a bijection
Irr Hiy (we) — Tt Hw (wp) ,  x — X",
defined by
X" (Ty) = x0,c(Ty )x(Tg-1) whenever b € By (wyp).
We have (x0.¢)" = X0 -
3. By specialisation v — 1, x and x™° become dual characters of the group W (we):

X" lo=1 = (xlo=1)"

4. Assuming 1.60, we have
(a) Syne(z) = Sy ()" = ((Tlx) =" Sy(z),
(b) Uch +UX = 0.

Proof. —

(1) and (2) are immediate consequences of the definition of Hfy, (we). (3) follows
immediately from the definition of the correspondence, since xo . specialises to the
trivial character.

By Theorem—Conjecture 1.60, the generic Schur elements are multihomogeneous
of degree 0 (we recall that this is proven, for example, for all imprimitive irreducible
complex reflection groups — see 1.65 and 1.66 above), so by construction of the
compactification we have Syne(z) = Sy (z)Y . The assertion (4)(a) follows from 3.17
and the assertion (b) is obvious. O
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Let us recall (see 3.3.1) that

Feg(R,,
Deg(x) := 7%(? e)
X
ne Feg(Ry,
Deg(x )=%-
Xl’lC

We denote by d, (resp. dync) the sum of the valuation and of the degree of
Deg(x)(x) (resp. of Deg(x")(x)).

Lemma 3.21. —
1. We have
Oy = Ny’ — oy and  Deg(x)(x)" = (¢~ )" *Deg(x)(x)
Syne = NE& — g yme and Deg(x™)(z)" = (¢'2) 72" Deg(x")(z) .
2. We have

Deg(x") () = (¢ 'a) MW = Deg(x)(z) = (¢~'2)7*Deg(x)(x) -

Proof. —
(1) is immediate. To prove (2), notice that

v _ Feg(Rup)(@)" _ (('a) =N Feg(Ruy)(x)

Deg(X) (3?) SX (x)\/ = anc (IE)
= (¢"e)” ¥ Deg(x")(x)
and (2) results from (1). O

The case W (wyp) cyclic
We assume now that W(w¢) is cyclic of order e. Let s be its distinguished gener-
ator, and let s be the corresponding braid reflection in By (wep).
Let Hw (wep) be a spetsial ®-cyclotomic Hecke algebra of compact type associated
with we, defined by the polynomial
e—1
[Tt -ccaym),
j=0
where m; are nonnegative rational numbers such that em; € N. We have my =
ew /e > m; for all j.
Let us denote by v an indeterminate such that v¢ = (~'z, so that the algebra
Hw (we) splits over K (v).
For each j, we denote by 6; the character of W (w¢) defined by 6;(s) = (7 .
The specialization v — 1 defines a bijection

{ Irr (W(we)) — Irr (Hw (we)) ,

0; 0\,
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by the condition G;U)(s) = (Jv™i. We set 0 := 0,0) .
5
Let Hj (we) be the noncompactification of Hy (we), defined by the polynomial

e—1

[ = ¢ taym=m).

7=0
We denote by 9;“’“ the character of M} (we) which specializes to §_; for v = 1.

So 9§v)’nc(s) = (7Ivem=mi) | We set ol = Tg(orme

Lemma 3.22. —
0 = em; — Nii?,
{O‘?C =e(m—m;) — N‘},B'p = Nyt —em; .
Proof. —

Let S; be the Schur element of Hyy(wey) corresponding to 9§-U). By definition, the
integer o; is defined by an equation

Si(z)Y =z~ S;(z)

for some complex number .
On the other hand, it results from 1.69 and from Definition 3.3.1, (Ncs3) and (cs3),
that

ref

8j(x)" = v N 55(2)
Se()Y = v e MmN ghe ()

proving that o; = em; — Ni¢f and o3¢ = e(m—m;) —N‘})Vyp. Since em = N‘},’gp—FN‘ﬁ{}f,
we deduce that o3¢ = Nt —em; . O

A generalization of the cyclic case

We shall present now a generalization of Lemma 3.22 to the general case, where
we is a (-regular element for W, and W (we) not necessarily cyclic.

Let Hy (we) we a spetsial ®-cyclotomic Hecke algebra (either of compact type or
of noncompact type) attached to we, defined by a family of polynomials

6171

Py(t,e) = [ (= ¢, (¢ raymo)
3=0 Ie Aw (we)

Any linear character x of Hy (we) is defined by a family (jr,,) where I € Awy (wep)

and 0 < jr < er — 1 such that, if s; denotes the braid reflection attached to I, we

have
X(81) = ¢l (¢ )™
Whenever I € Aw (wyp), we denote by vy the cardinality of the orbit of I under
W (we).
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Note that the second assertion of the following Lemma reduces to Lemma 3.22 in
the case where W (wyp) is cyclic.

Lemma 3.23. —

1. Whenever x is a linear character of Hy (wy), we have

x(m) = H (C*lx)ezmz,n,x — H (Cflx)welml,”yx .

IeAw (wep) IeAw (we) /W (wep)
2. We have
Ny + Oy = Z ermy ;. = Z VIermry,j, . -
IeAw (wyp) IeAw (wp) /W (wep)
Proof. —

The assertion (2) follows from (1) and from 3.18. Let us prove (1).
From [BMR98, 2.26], we know that in the abelianized braid group By /[Bw, Bw],
we have m = J[;c 4y, (e S7° > Which implies (1). O

3.4.3. Ennola action. —

If G*' is a finite reductive group, with Weyl group W of type B,,, Cp, Day,, Er, Es,
Fy, Gg, then “changing x into —z” in the generic degrees formulae corresponds to a
permutation on the set of unipotent characters, which we call Ennola transform. The
Ennola transform permutes the generalized d-Harish—Chandra series (see [ BMM93)),
sending the d-series (corresponding to the cyclotomic polynomial ®4(x)) to the series
corresponding to the cyclotomic polynomial ®4(—x). We shall now introduce appro-
priate tools to generalize the notion of Ennola transform to the setting of “spetses”.

Throughout this paragraph, we assume that the reflection group W acts irreducibly
on V. Its center ZW is cyclic and acts by scalar multiplications on V. By abuse of
notation, for z € ZW we still denote by z the scalar by which z acts on V. We set
c:=|ZW|.

We define an operation of ZBy, on the disjoint union

|_| Irr (Hw (zwe)) .
z2€ZW

Let zg be the positive generator of ZByy. For z € ZByy, we denote by z its image
in ZW. There is a unique n (0 < n < ¢ — 1) such that z = (.

The element w'y := zwe is then ¢’ := z{-regular. We have K({) = K(¢’) and the
algebra Hy (zwy) is split over K (¢)(v") where v' := ¢, "v. We have o = ¢ 'z, and
thus K(v) = K(v').

Consider the character £ defined on ZBy, by the condition

& : 29 — Cpe = exp (2mi/he)
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so that £(z) = (I'.. Note that £(z") = z.
The group ZBy acts on K (v) as a Galois group, as follows:
{ ZBw — Gal (F(v)/ﬁ(vhc)) ,

z— (v &(z) ) .

Notice that if Hy (we) is a spetsial ®(x)-cyclotomic Hecke algebra attached to a
regular element wp € W, then the algebra z.Hw (wyp) (see Lemma 3.15) is a spetsial
®(2~tx)-cyclotomic Hecke algebra attached to the regular element zwp € Wep.

Definition 3.24. —
For x € Irr (Hw (wy)), z € ZBw and so z = £(z"), we denote by z.x (the Ennola

image of x under z) the irreducible character of Hyw (zwyp) over K(v) defined by the
following condition:

(Z-X)vzg(z) = Xv=1-
In other words, the following diagram is commutative:

Irr(Hw (we)) ~ Irr(Hw (2wep))
v—1 AUA
Trr(W)

In particular, the element m = z§ defines the following permutation

Irr (Hw (wep)) — Irr (Hw (we))
X+ mw.x where (w.X)y=¢c, = Xv=1,

so it acts on Irr(Hw (wy)) as a generator of Gal(K (v)/K (x)).

Lemma 3.25. —
Let p be an element of ZBw (wp) (hence of ZBw (zwe)) such that p™ = w for
some a,n € N. Then for z € ZBw and x € Irr (Hw (wy)) we have
hyp
1. Wz xv=1 (p) = g(z)_h(NW —i—ax)a/nwxv=l(p)7
2. Wan(p) = wy(p)é(m) MW Hex)a/m,

Proof. —
By Definition 3.24, we know that

Wxo=1 = Wz-xy—g(z) *
Thus by Lemma 3.19(2), we get

WPy )a/n
Wxy=1 (P) = wZ‘Xuzg(z) (p) = f(z)h(NW tox)al Wz xyp=1 (p)
from which (1) follows.
Now (2) follows from (1) and from Lemma 3.19(1). O
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Proposition 3.26. —
Let x € Trr (Hw (we)).
1. The character x takes its values in K(x) if and only if m-x = x .
2. Assume x is such that w-x = x. Then for all p € ZBy (wyp) such that p™ = ©¢,
we have
(NP + ox)% €Z.

Remark 3.27. —

Consider for example the case of the Weyl group of type E7, and choose K = Q,
¢ =1, wp = 1. The algebra Hyy (1) is then the “usual” Hecke algebra over Z[x, 2],
and we have h = 2. We set = = v2.

All the irreducible characters of Hy (1) are Q(z)-rational, except for the two char-
acters of dimension 512 denoted ¢51211 and ¢s1212, which take their value in Q[v].

The Galois action of 7 is given by v — —v, and we have 7 - ¢512,11 = @512,12.

Proof of 3.26. —
(1) follows as 7 acts as a generator of Gal(K (v)/K (z)).
(2) Applying Lemma 3.25 above to the case z = & gives

—h Nhyp+<rx a/n —
Wr.x(P) :wx(P)C;L (Nw o/ , hence ¢,

from which the claim follows. O

h(N‘},"}'p+UX)a/n -1
=4,

Remark 3.28. —
By Lemma 3.21(1), we know that o, = Ni&f — 6, , which implies that
h a a
(NP + )2 = (ew — )

Since eWE is the length of p, it lies in Z, and so, as elements of Q/Z, we have
n
a

h a
(N + O-X)E = _5XE :

In other words, the knowledge of the element (NI]?I}' Py UX)E as an element of Q/Z is
n

the same as the knowledge of the root of unity ¢, oxa

3.4.4. Frobenius eigenvalues. —

Here we develop tools necessary to generalize to reflection cosets Proposition 2.19,
where we compute the Frobenius eigenvalues for unipotent characters in a principal
wp-series.

We resume the notation from §1.4.4:

— wy is a (-regular element, ¢ is the minimal polynomial of ¢ over K, and we
have ¢ = exp(2wia/d),
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— we have an element p, ./, of the center of the braid group Bw (wy) which
satisfies p‘f/’a/d = 7%,
We still denote by Hy (we) a spetsial @-cyclotomic Hecke algebra associated with

wep, either of compact or of noncompact type.

Notation 3.29. —
Whenever x is an (absolutely) irreducible character of Hy (wyp) over K(v), we

define a monomial FrE,ZZ o/ d)(x) in v by the following formulae:

Brara) | e wy(py 4sa) for Hw (we) of compact type,
Frug (x) =

Wy (Py,asd) for Hw (we) of noncompact type.

When there is no ambiguity about the ambient algebra, we shall note Fr(Pv.a/a) (x)
instead of Frgfg’“/d)(x).
Since pﬁyl ajd = 7%, the following lemma is an immediate corollary of Lemma 3.19.

Recall that we denote by h the integer such that (~'a = v".

Lemma 3.30. —
Whenever X is an h-th root of unity we have

ew 32 1 h(Nhyp+a_X)57a
Fr(Pr o) () = CW T Wy, (P) (AT )" W 4 (compact type),

va:A(P)(A_lv)h(Na‘?hmx)% (noncompact type),
and in particular

¢ Ew,_, (VWO (compact type),

Fr(Pw,a/d) — )
(X) )Uh(NXr/;t+UX)6Ta

Wyper (P (noncompact type).

The above lemma shows that the value of Fr(Pr.a/4)(y) does not depend on the
choice of 7.

If we change a/d (in other words, if we replace p, , /4 by p%a/dﬂ'"‘;), we get (in the
compact case):

(3.31) Fr(Prasa™™) (x) = C*(Né'vy“rﬂx)népr(ﬂ%a/d) (x)

If we force p., ,/4 to be as short as possible (i.e., if we assume 0 < a < d), the
monomial Fr(p%a/d)(x) depends only on x. In that case we denote it by Fr.,(x).

Notice that if y is K (x)-rational, or equivalently if 7 - xy = x (see 3.26), we have
Wy (Py,q7a) € K(2), and Fr(Pr.a/d) (y) is a monomial in .

Definition 3.32. —
Assume x is K (x)-rational. Then the Frobenius eigenvalue of X is the root of unity
defined by

fI'(X) = Frwgo(X”x:l .
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Proposition 3.33. —
Let x be an irreducible character of the algebra HS, (we) of compact type. Assume
that x is K(z)-rational.
1. We have
fr(x) = CFOW oy (p) = CF %, (0).
2. For the corresponding character x™° of the associated algebra of noncompact
type, we have

_Sa(nref oo _Sda *
fr(x"€) = ¢~ W Ty ne (p) = ¢ Pwe, (p) = fr(X)"

v=1

Proof. —
It is direct from Lemma 3.30. O

A definition for general characters. —

Comment 3.34. —

In the case of a character x which is not K (z)-rational, we can only attach a set of roots
of unity to the orbit of x under Gal(K (v)/K (x)).

Consider for example the case of the Weyl group of type E7, and choose wp := wo,
the longest element. Then the algebra Hw (wo) has two irrational characters, say x1 and
X2, which correspond to two unipotent cuspidal characters of the associated finite reductive
groups (these characters belong to the same Lusztig family as the principal series unipotent
characters Pxs12,11 and pX512,12)'

These two unipotent cuspidal characters can be distinguished by their Frobenius eigen-
values, which are ¢ and —i.

Here we shall only attach to the Galois orbit {x1, x2} the set of two roots of unity {z, —i}.

From now on, in order to make the exposition simpler, we assume that Hy (wep)
s of compact type.
Let x € Irr(Hw (we)). Let k denote the length of the orbit of x under . It follows

from 3.25 that

hy -
w‘er(p) - wX(p)C(NWer X)(s )

hence d divides k(NP + 0,)8. Thus (Nj® + 0, )da/d defines an element of Q/Z of
order k' dividing k.

We shall attach to the orbit of y under 7 an orbit of roots of unity under the action
of the group p,, as follows.

Choose a k-th root ¢y of ¢, and set xy := (yv"/* so that v"/* = Co_lzo. Then we
have

vh(N;‘gPJrgX)aa/d = ( )k(N;’ngrax)aa/d

CEISCO
where k(N{J® + o, )da/d € Z.
By Lemma 3.30, we see that Fr,,,(x) is a monomial in zy.
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We recall (see Remark 3.28 above) that, as an element of Q/Z, we have (N%}[ﬁ'p +
UX)%“ = —6X%“, and that it is defined by the root of unity ¢=x%.

Definition 3.35. —
If x has an orbit of length k under m, we attach to that orbit the set of roots of
unity defined as

hyp o) %a
fI‘(X) = {Frwcp(X”a:g:l )\k(NW +ox) 43 ()‘ € :u’k)} = Fr’wtp(X)‘l'O:l My s
with k' the order of the element of Q/Z defined by
da da
h
(Ny'® + O—X)E = _5><E )
(in other words, k' is the order of (~x%).

Remark 3.36. —
The set fr(y) is just the set of all k’-th roots of (Frye(X)|ze=1)"

/

A computation similar to the computation made above for the rational case gives

Proposition 3.37. —
Let x be an irreducible character of the algebra HSy, (we) of compact type. Assume
that x has an orbit of length k under m, and that (N‘];B'p —i—ox)%‘l has order k' in Q/Z.
The set of Frobenius eigenvalues attached to that orbit is the set of all k'-th roots

of
/1 8a /
¢ (wyy ()
Definition 3.38. —
For x an irreducible character of the compact type algebra Hiy (we), the set of

Frobenius eigenvalues attached to the orbit of the corresponding character x™¢ of the
associated noncompact type algebra is

fr(x™) = fr(x)",

the set of complex conjugates of elements of fr(x).

3.4.5. Ennola action and Frobenius eigenvalues. —

Let us now compute the effect of the Ennola action on Frobenius eigenvalues.
Recall that we assume Hyy (we) to be of compact type.

We start by studying the special case of the action of the permutation defined by
7 on Irr (Hw (we)).

Lemma 3.39. —
For p=p., .4 as above, whenever x € Irr (Hw (wyp)), we have

Fre™ (y) = B (r.x )2 VW o) |
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Proof of 3.39. —
On the one hand, by Definitions 3.24 and 3.29 we have

™ (x) = (0o (pre?) = (O (p) ()
= (Cl(p)wx(p)) (Cl(ﬂ“)wx(ﬂ-%) )
Proposition 3.18 gives that
wy (%) = Ph (NP +03)8

Morever, (/7" = (¢ =
second remark following 1.3). It follows that

Fro™ (y) = (C“me(p)) MO+
On the other hand, by definition
Fr(m.x) = (' Pwx(p).
By Lemma 3.25, and since {(7) = £(z§) = exp(27i/h), this yields

wrx () = wy(p) exp(—2mi (NP + 0y )da/d) = wy(p) ¢~ MW 7

1 since (wy)® is a (°-regular element of W (see the

hence
hy -
Fr? () = (Pl (p) ) (W75
The lemma follows. O
Now we know by (3.31) that
Frf™ () = ¢~ W (y)
which implies by Lemma 3.39
FrP(m.x) = C(Ni'vy“rax)5Frp(x)x75(N3§p+ffx) .

The following proposition is now immediate. Note that its statement contains a slight
abuse of notation, since for xy a K (x)-rational character, fr(x) is not a set — it has
then to be considered as a singleton.

Proposition 3.40. —
fr(m - x) = (¢ (e Er(x) )
Let us now consider the general case of Ennola action by an element z € ZByy.
By Lemma 3.25, we have
Y202 ) = (20) P (2°p)

= (20)=" P, (2 p)& (z) PV HeI= 0) /1)

§ _ (NP,
= (20Q)'P) (2¢) "Wy, (2°p)
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hence
2 P (z-x)

ZWP

Fri o ()
_ (zol(zé)zl(p)(zo—(N};yPJrax)an _1(Za)vh(zv;‘guax)z(z&)/z(ﬂ) _

— (20)/)2HP) (2¢) = (VW H00y, (9

Since Fr” # (z-x) = Fr e (z-x) up to an integral power of (zC)(NWp+”X)5 (see (3.31)),

Zwep
what precedes proves the following proposition.

Proposition 3.41. —
Up to an integral power of (z()(Nat/yp+gx)5, we have

s
Frzwp (Z i X> z° by 5 V(28 ™
T e Py (R o),

3.5. Spetsial data at a regular element, spetsial groups

3.5.1. Spetsial data at a regular element. —

Definition 3.42. — Let G = (V,W, ) be a reflection coset and let wp be a P-regular
element of We.

We say that G = (V,W,®) is spetsial at ® (or spetsial at wyp) if there ezists a
spetsial ®-cyclotomic Hecke algebra of W at wep.

We are not able at the moment to classify the irreducible reflection cosets which
are spetsial at an arbitrary cyclotomic polynomial . But:

— One can classify the irreducible split reflection cosets which are spetsial at z—1 :
they are precisely the spetsial reflection groups (see Proposition 3.44 below).

— If G = (V,W) is a split spetsial reflection coset on K, and if w is a ®-regular
element of W, then (V(w), W(w)) is spetsial at ® : for W primitive, this will
be a consequence of the construction of the spets data associated with G (see
85 below).

3.5.2. The 1-spetsial algebra Hy . —

Let us now consider the special case where wp = Idy .

Definition 3.43. —
Let W be a reflection group. We denote by Hy (resp. HYy) the algebra defined by
the collection of polynomials Py (t,x) e aw) where

Py(t,z) = (t—a)(t 4+t +1)
(resp. Pr(t,x) = (t — 1)(t# 1 4. tg1=2 4 gen=1) )
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Proposition 3.44. —
Let G = (V,W) be a split reflection coset.
1. There is at most one 1-cyclotomic spetsial Hecke algebra Hy (Idy) of compact
type (resp. of noncompact type), namely the algebra Hyw (resp Hyg ).
2. (V,W) is spetsial at 1 if and only if it is spetsial according to [Mal98, §3.9].

Proof. —

We only consider the compact type case.

(1) Since wyp = 1, we have W(p) = W, A(wp) = A, and for each H € A we have
CWy /eH =1.

Hence by Definition 3.7, (cAl), we have Py (t,z) € K|t, x|, and by Definition 3.7,
(csl), we see that Py (t,z) is divisible by (¢t — x) and

Py(t,x) = (t — 2)Qn(t)
for some Qg (t) € KJt].

By Definition 3.7, (CA2), we see that Qg (t) = (t°# 1 4+ .-+t +1).

(2) If the algebra Hy is a l-cyclotomic spetsial Hecke algebra, it follows from
Definition 3.3.1, Global conditions, (scl), that its Schur elements belong to K(x).
This shows that (V,W) is spetsial according to [Mal98, §3.9] by condition (ii) of
[Mal98, Prop. 3.10].

Reciprocally, assume that (V, W) is spetsial according to [Mal98, §3.9]. Then we
know that all parabolic subgroups of W are still spetsial according to [Mal98, §3.9]
(see e.g. [Mal00, Prop. 7.2]). The only properties which are not straightforward to
check among the list of assertions in Definition 3.3.1 are the properties concerning
the splitting fields of algebras. Since the spetsial groups according to [Mal98, §3.9]
are all well-generated, these properties hold by [Mal99, Cor. 4.2]. O

3.5.3. Spetsial reflection groups. —
Let (V,W) be a reflection group on C. Assume that the corresponding reflection
representation is defined over a number field K (so that Qu C K).
The algebra Hy has been defined above (3.43).
Let v be such that v/*)l = 2. Whenever y is an absolutely irreducible character
of the spetsial algebra Hyy,
— we denote by S, the corresponding Schur element (so Sy € K[v,v7']),
— We denote by 1 the unique character of Hy whose Schur element is the Poincaré
polynomial of W (see Definition 3.7, (¢s2’)). The degree of a character x of
Hw is (see Definition 3.7, (sC3))

Feg(RY)

Deg(x) = 5
X

and in particular Deg(1) = 1.
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The following theorem (see [Mal00, Prop. 8.1]) has been proved by a case-by-case
analysis.

Theorem 3.45. —
Assume Theorem—Conjecture 1.60 holds.
1. The following assertions are equivalent.
(i) For all x € Irr(Hw), we have Deg(x)(v) € K(z).
(ii) W is a product of some of the following reflection groups:
o G(d,1,7) (d,r > 1), Gle,e,r) (e,r > 2),
e one of the well-generated exceptional groups G; with 4 < i < 37
generated by true reflections,
o Gy, G, Gs, G4, Gas, Gag, G3a.
2. If the preceding properties hold, then the specialization Si(x) of the generic
Poincaré polynomial equals the “ordinary” Poincaré polynomial of W :

Sl(m) = ﬁ(1+$—|—-~-+xd_7’*1)’

j=1

where r = dimV and dy, ..., d, are the degrees of W (see 1.1.5).

Remark 3.46. —
— A spetsial group of rank r is well-generated, but not all well-generated reflection
groups of rank r are spetsial.
— From the classification of spetsial groups, it follows that all parabolic subgroups
of a spetsial group are spetsial.

3.5.4. Rouquier blocks of the spetsial algebra: special characters. —

Let G = (V, W) be a spetsial split reflection coset on K.

For 6 € Irr(W), we recall (see 1.25) that the fake degree Fegg(Ry) of the class
function Ry on W (which in the split case coincides with 6) is the graded multiplicity
of 6 in the graded regular representation KW#".

Let Hy be the 1-cyclotomic spetsial Hecke algebra (see Proposition 3.44). Let us
choose an indeterminate v such that v/#"! = . We denote by

(W) —= Irr(Hw) , 0 X0,
the bijection defined by the specialization v + 1.
Notation 3.47 —
For 0 € Irr(W) we define the following:

1. ag and Ay :
— we denote by ag the valuation of Deg(xp) (i.e., the largest integer such
that ~*Deg(xyp) is a polynomial),
— and by Ay the degree of Deg(xg),
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2. b@ and Be :
— we denote by by the valuation of Fegg(Rp),
— and by By the degree of Fegg(Rp).

Definition 3.48. —
We say that 6 € Irr(W) is special if ag = by.

Let us recall (see Theorem 1.81) that ap and Ay are constant if xp runs over the
set of characters in a given Rouquier block of Irr(#Hy ). Then if B is a Rouquier block,
we denote by ag and Ag the common value for ay and Ay for yy € B.

The following result is proved in [MR03, §5] (under certain assumptions for some
of the exceptional spetsial groups), using essential tools from [Mal00, §8].

Theorem 3.49. —

Assume that W is spetsial. Let B be a Rouquier block (“family”) of the 1-spetsial
algebra Hyy .

1. B contains a unique special character xa, -
2. For all 6 such that xo¢ € B, we have

ag <bg and By < Ag.



CHAPTER 4

AXIOMS FOR SPETSES

Our goal is to attach to G = (V, W) (where W is a spetsial reflection group) an
abstract set of unipotent characters of G, to each element of which we associate a
degree and an eigenvalue of Frobenius. In the case where G is rational, these are the
set of unipotent characters with their generic degrees and corresponding eigenvalues
of Frobenius attached to the associated reductive groups.

These data have to satisfy certain axioms that we proceed to give below.

We hope to give a general construction satisfying these axioms in a subsequent
paper. For the time being, we only know how to attach that data to the particular
case where G has a split semi simple part (see below §6); the construction in that
case is the object of §6.

4.1. Axioms used in §6

4.1.1. Compact and non compact types: Unipotent characters, degrees
and eigenvalues. —

Given G as above, we shall construct two finite sets:

— the set Uch®(G) of unipotent characters of compact type,
— the set Uch(Gy.) of unipotent characters of noncompact type,

each of them (denoted Uch(G) below), endowed with two maps
— the map called degree

Deg : Uch(G) — K[z] , p— Deg(p),

— the map called Frobenius eigenvalue and denoted Fr, which associates to each
element p € Uch(G) a monomial of the shape Fr(p) = A,z where
e ), is a root of unity,
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e v, is an element of Q/Z,
with a bijection
Uch®(G) — Uch(Gype) , p— p"°,
such that

1. Deg(p™) = ™ Deg(p)"
2. Fr(p)Fr(p™) =1,

and subject to many further axioms to be given below.

In what follows, we shall construct the “compact type case” Uch®(G) (which will
be denoted simply Uch(G)). The noncompact type case can be obtained using the
above properties of the bijection p — p"°.

4.1.2. Basic axioms. —

Axioms 4.1. —

1. If G = G1 x Gy (with split semi-simple parts) then we have Uch(G) ~ Uch(Gq) x
Uch(Gz). If we write p = p1 ® pa this product decomposition, then Fr(p) =

Fr(p1)Fr(p2) and Deg(p) = Deg(p1)Deg(p2).
2. A torus has a unique unipotent character Id, with Deg(Id) = Fr(Id) = 1.

Azxziom 4.2. —
For all p € Uch®(G), Deg(p) divides |G|..
For all p € Uch(Gy), Deg(p) divides |G|ne

Aziom 4.3. —
There is an action of Nar,vy(We)/W on Uch(G) in a way which preserves Deg
and Fr.

The action mentioned above will be determined more precisely below by some
further axioms (see 4.16(2)(a)).

Remark 4.4. —

We recall that parabolic subgroups of spetsial groups are spetsial (see 3.46 above).
For a Levi L of G, we set Wi (L) := Ny (L)/WL . We have by 4.3 a well-defined action
of Wg(IL) on Uch(L), which allows us to define for A € Uch(L) its stabilizer Wg(L, A).
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4.1.3. Axioms for the principal (-series. —

Definition 4.5. —
Let ¢ € p and let  its minimal polynomial on K (a K-cyclotomic polynomial).

1. The (-principal series is the set of unipotent characters of G defined by

Uch(G, () :={p € Uch(G) | Deg(p)(¢) #0}.
2. An element p € Uch(G) is said to be (-cuspidal or ®-cuspidal if

_ IGls
1ZGls

Deg(p)e

Let us recall that, given a spetsial (-cyclotomic Hecke algebra (either of compact or
of noncompact type) Hw (wep) associated with a regular element we, each irreducible
character x of Hy (wy) comes equipped with a degree Deg(x) and a Frobenius eigen-
value Fr(y) (see §4 above).

Axiom 4.6. —
Let wp € W be (-reqular. There is a spetsial (-cyclotomic Hecke algebra of
compact type Hw (wp) associated with we, a bijection

Irr(Hw (we)) — Uch®(G, () , x — py

and a collection of signs (€ )yetrr(Hw (wyp)) Such that

L. that bijection is invariant under the action of Narvy(We)/W,

2. Deg(py) = exDeg(x) ,
3. Fr(py) = Fr(x) mod xZ .

Remark 4.7. —
By 3.7(sc3), we see that condition (2) above is equivalent to

Feg(R.,
Deg(py) = 6y ——2 .
X

4.1.4. On Frobenius eigenvalues. —

For what follows, we use freely §4, and in particular §3.4.4.
We denote by v an indeterminate such that Hy (we) splits over C(v) and such
that v® = ¢~z for some integer h. Then the specialization v — 1 induces a bijection

Irr (W (wep)) — Trr(Hw (wep)) , 6 — xo -
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Assume ¢ = exp(2mia/d) and let p € ZBy (wg) be such that p? = w3, Then we
have the following equality modulo integral powers of x :

Fr(pXe) = Frp(Xe) = Cl(p)wXG (p)
(48) — Cl(P)we(p)(g—lx)l(p)—(apx(g +A”xa)ll((7-‘:§
= () (¢ ) e A K

The last formula should be interpreted as follows: for the power of x, one should
take —(ap,, + Apxe)% modulo 1, and if xy has an orbit under 7 of length k, then

Lp)
C(a"XG Ao )T should be interpreted as attributing to the elements of the orbit of

xo the k-th roots of Ck(apxe A xy ) T0m) , a well-defined expression since the exponent is
integral.

4.1.5. Some consequences of the axioms. —

1. Let us recall (see 4.7 above) that

Feg(R
Deg(xg) = —Burtwe)
X6
Since CHw (we) specializes to CW (wep) for v — 1, we have
(W (we)|

Sye(€) = IO
We also have Feg(R,,)(¢) = |W (we)| (see Proposition 1.53, (2)). Thus we get

(4.9) Deg(pxs)(C) = ex,0(1) -

2. Let us denote by Ty (wep) the canonical trace form of the algebra Hy (we).
By definition of spetsial cyclotomic Hecke algebras (see Definition 3.7, (SC3)), we
have the following equality between linear forms on C(z)Hw (wep):

Feg(Rup)Tw(we) = > Deg(x)x,
x€lrr(Hw (we))
and taking the value at 1 we get

Feg(Rup) = Y, x(1)Deg(x)

XEIrr(Hw (we))

= Z exx(1)Deg(py) -

x€elr(Hw (we))

Using the bijection

Ir(W(wep)) — Ir(Hw (we)) . 0+ xo,
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and setting ey 1= €, for 8 € Irr(W (wyp)), we get

(4.10) Feg(Ruy) = Z £90(1)Deg(py, ) -
0€lrr(W (wep))

Finally, we note yet another numerical consequence of Axiom 4.6.

Notation 4.11. —
For p € Uch(G), let us denote (see above 1.78) by a, and A, respectively the
valuation and the degree of Deg(p) as a polynomial in z. We set 6, :=a, + 4,.

Corollary 4.12. —

Let (1,C2 € p. If p € Uch(G, (1) N Uch(G, Gz), then (1* = ¢y’ .
Proof. —

By Lemma 3.21, (1), we see that whenever p € Uch(G, (), we have Deg(p)¥ =
(¢'x)~%Deg(p) , which implies the corollary. O

4.1.6. Ennola transform. —

Axiom 4.13. —

For z € Z(Bw) with image z € Z(W), the algebra Hw (zwyp) is the image of
Hw (we) by the Ennola transform explained in 2.23. If £¢ and ¢ are the corresponding
reqular eigenvalues, this defines a correspondence E, (a well-defined bijection except
for irrational characters) between Uch(G, () and Uch(G,1d), such that

Deg(Ey(p))(x) = £Deg(p)(z~')
and Fr(E,4(p))/Fr(p) is given by 3.41 taken modulo z*.

4.1.7. Harish-Chandra series. —

Here we define a particular case of what will be called “®-Harish-Chandra series”
in the next section.

Definition 4.14. —
We call cuspidal pair for G a pair (IL, \) where
— L is Levi subcoset of G of type L = (V,Wryp) (WL is a parabolic subgroup of
W), and
— A€ Uch(L) is 1-cuspidal.

Remark 4.15. —

— By remark 3.46 a parabolic subgroup of a spetsial group is spetsial thus it makes
sense to consider Uch(L).

— A Levi subcoset L has type (V, Wye) if and only if it is the centralizer of the
1-Sylow subcoset of its center ZL.
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— It can be checked case by case that whenever (L, \) is a cuspidal pair for G,
then Wi (L, \) is a reflection group on the orthogonal of the intersection of the
hyperplanes of W, which gives a meaning to (2) below.

Azioms 4.16 (Harish—Chandra theory). —

1. There is a partition

Uch(G) = | | Uchg(L, A)
(LX)

where (L, \) runs over a complete set of representatives of the orbits of W on
cuspidal pairs for G.

2. For each cuspidal pair (L, \), there is a 1-cyclotomic Hecke algebra He (L, \)
associated to Wg (L, A), an associated bijection

Irr(Hg (L, A)) — Uchg(L, A) , X = py

with the following properties.
(a) Those bijections are invariant under Ngy,ovy(Wep)/W.
(b) If we denote by Sy the Schur element of the character x of Hg (L, \), we
have

Deg(py) = DEE/ LD

(c) If G is assumed to have a split semisimple part (see below §6), for T, =
(V) the corresponding mazimal torus, the algebra Hg(T,,1d) is the
1-cyclotomic spetsial Hecke algebra Hw and Uchg(T,,1d) = Uch(G, 1).
The bijection x +— py is the same as that in 4.0, in particular the signs

€y in 4.6 are 1 when ¢ = 1.
(d) For all x € Irr(Hg(L, N)), we have Fr(p,) = Fr(A).
3. What precedes is compatible with a product decomposition as in 4.1(1).

Remark 4.17 —
Since the canonical trace form 7 of Hg(L, \) satisfies the formula

1
T = Z ?XX ’
X
it follows from formula (2)(b) above that

|G|w’
|L|r’

(4.18) Deg(\) =12 = 3™ Deg(p,)x(L).
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4.1.8. Reduction to the cyclic case. —

Assume that L = (V, WL¢), and let H be a reflecting hyperplane for Wg(IL, A). We
denote by Gy the “parabolic reflection subcoset” of G defined by Gy = (V, W)
where Wy is the fixator (pointwise stabilizer) of H. Then Wg, (L, \) is cyclic and
contains a unique distinguished reflection (see 1.1.1) of Wg(L, ).

Axiom 4.19. —
In the above situation the parameters of Hg,, (L, A) are the same as the parameters
corresponding to H in Hg (L, \).

This allows us to reduce the determination of the parameters of Hg (L, A) to the
case where Wg(IL, A) is cyclic.

4.1.9. Families of unipotent characters. —

Axioms 4.20. —
There s a partition
Uch(G)= || F
FeFam(G)
with the following properties.

1. Let F € Fam(G). Whenever p,p’ € F, we have
ap =ay and A, =Ay.

2. Assume that G has a split semisimple part. For F € Fam(G), let us denote by
Br the Rouquier block of the 1-cyclotomic spetsial Hecke algebra Hy defined by
FNUch(G,1). Then

> Deg(p)(x)Deg(p’)(y) = > Fegg (Ro)(x)Fegg(Ro)(y) -

pEF OEII‘I‘(W) ‘XQGB}‘

3. The partition of Uch(G) is globally stable by Ennola transforms.

Remark 4.21. —
Evaluating 4.20(2) at the eigenvalue ¢ of a regular element we, we get using 4.5
(1) and 4.9

(4.22) > [Fegg (Rg)(Q)|* = >, 0(1)%.
ot (W) xo€B {0€1r(W (w2)) | g €F)

Remark 4.23 (When W (wyp) has only one class of hyperplanes)

If W(wy) has only one class of hyperplanes, the algebra Hy (we) is defined by
a family of parameters ijhmj , which are in bijection with the linear characters of
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W(wep). If 8 is a linear character of W(wy), let mg be the corresponding m;. We
have from Lemma 3.23, (2) that

ref h,
Ny + Nvgp —Qp, Ang = CW (wyp)To -
If F is the family of p,, this can be written
me = (Ng}‘f + N‘}/I‘},p - 5f)/ew(w¢) .

Thus formula 4.22; since we know its left-hand side, gives a majoration (a precise
value when W (we) is cyclic) of the number of my with a given value (equal to the
number of § such that p,, € F with a given dr).

4.2. Supplementary axioms for spetses

In this section, we state some supplementary axioms which should be true for
the data (unipotent characters, degrees and Frobenius eigenvalues, families, Ennola
transforms) that we hope to construct for any reflection coset G = (V, W) where W
is spetsial.

On the data presented in §6 and appendix below we have checked 4.24.

4.2.1. General axioms. —

Axiom 4.24. —
The Frobenius eigenvalues are globally invariant under the Galois group Gal(Q/K).

Axiom 4.25. —
Let wp € W be (-reqular. There is a bijection

I (Hyy (we)) — Uch(Gue, ) » X = pY°

and a collection of signs (€3°)yetrr(Hw (we)) Such that
L. that bijection is invariant under the action of Ngrvy(We)/W.
2. Deg(pe) = Sy ¢ Deg(x™),
3. Fr(py©) = Fr(x™) (mod z%).

Remark 4.26 (The real case). —
By 1.10, if G is defined over R, then CNWP = +1, hence we have Deg(py°)(r) =
+Deg(x")(x) .
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4.2.2. Alvis—Curtis duality. —

Azxziom 4.27 —
1. The map
Uch(G.) — Uch(Gyc) , p s p™°,

is stable under the action of Narvy(We)/W.
2. In the case where G = (V,W) is split and W is generated by true reflections,
we have (by formulae 1.44) |Glne = |Glc. In that case

Uch(G,.) = Uch(G.),
a set which we denote Uch(G), and the map
Uch(G) = Uch(G)
DG : ne
P pie,
is an involutive permutation such that
(a) Deg(Dg(p))(x) = 2w Deg(p)(z)" ,

(b) Fr(p)Fr(Ds(p) = 1,
called the Alvis—Curtis duality.

By definition of the (-series, given the property connecting the degree of p"° with
the degree of p, it is clear that the map p — p"° induces a bijection

Uch(Ge, ¢) — Uch(Gype, ¢) .

In particular, if G = (V,W) is split and W is generated by true reflections, the
Alvis—Curtis duality (see 4.27, (2)) induces an involutive permutation of Uch(G, ().

This is expressed by a property of the corresponding spetsial (-cyclotomic Hecke
algebra.

Axiom 4.28. —
Assume G = (V,W) is split and W is generated by true reflections. Let w € W be
a (-regular element, let Hw (w) be the associated spetsial (-cyclotomic Hecke algebra.

1. There is an involutive permutation
Dy (w) : Irr(Hw (w)) — Irr(Hw (w))
with the following properties, for all x € Trr(Hw (w)):
ref
(a) Deg(Dw (w)(x)) = 2™ Deg(x) ,
(b) Fr(Dw (w)(x))Fr(x) =1.
2. This is a consequence of the following properties of the parameters of Hy (w).
Assume that Hy (w) is defined by the family of polynomials

Pty = [[ (- (¢ tayme)

J=0 T€Aw (w)
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Then for all I € Aw(w), there is a unique jo (0 < jo < er — 1) such that
myj, = 0, and for all j with 0 < j < ey — 1, we have

My +MJjo—j = MJ .

4.2.3. ¢-Harish-Chandra series. —
Let ® be a K-cyclotomic polynomial.
Definition 4.29. —
We call ®-cuspidal pair for G a pair (L, \) where
— L is the centralizer of the ®-Sylow subdatum of its center Z1L,
— X a ®-cuspidal unipotent character of L, i.e., (see 4.5)

_ Lfe
|ZL]s

Deg(M\) o

Axiom 4.30. —
Whenever (L, A) is a ®-cuspidal pair for G, then Wg (L, \) is a reflection group on
the orthogonal of the intersection of the hyperplanes of Wp,.
Azioms 4.31 (P-Harish—Chandra theory). —
1. There is a partition
Uch(G) = | | Uchg(L, A)
(L, ))
where (L, \) runs over a complete set of representatives of the orbits of W on
®-cuspidal pairs of G.
2. For each ®-cuspidal pair (L, \), there is a ®-cyclotomic Hecke algebra Hg (L, ),
an associated bijection

Irr(Hg (L, \)) — Uchg (L, \) , x Py »

and a collection (€y)yenr(me(L,\)) Of signs, with the following properties.
(a) Those bijections are invariant under Nar,vy(Wep)/W.
(b) If we denote by S, the Schur element of the character x of Hg(L,\), we
have

Deg(M)(IG|/|L|)o’
Sy '
(c) Assume that a root ¢ of P is reqular for W, and let wp be (-regular. For
Twy := (V,wyp) the corresponding mazximal torus, the algebra Heg (T, 1d)
is a -cyclotomic spetsial Hecke algebra Hy (wep).
(d) For all x € Irr(Hg(L, X)), Fr(py) only depends on Hg(L, A) and Fr()).
3. What precedes is compatible with a product decomposition as in 4.1(1).

Deg(py) = ex
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4.2.4. Reduction to the cyclic case. —

Assume that L = (V, Wpwy) is a ®-cuspidal pair, and let H be a reflecting hy-
perplane for Wg (L, A). We denote by Gy the “parabolic reflection subdatum” of G
defined by Gy := (V,Wgwy) where Wy is the fixator (pointwise stabilizer) of H.
Then Wg,, (L, M) is cyclic and contains a unique distinguished reflection (see 1.1.1) of
We (L, A).

Axiom 4.32. —
In the above situation the parameters of He,, (IL, A) are the same as the parameters
corresponding to H in Hg (L, \).

4.2.5. Families, ®-Harish-Chandra series, Rouquier blocks. —

Her we refer the reader to 4.20 above.

Axiom 4.33. —
For each ®-cuspidal pair (L, \) of G, the partition
Uche(L,A) = | | (FNUchg(L,A))
FeFam(G)
composed with the bijection
UCh([;,(L7 )\) ;> Irr (Hg(L, /\))
is the partition of Irr (Hg (L, \)) into Rouquier blocks.

4.2.6. Ennola transform. —
For z € pu(K), we define
G, = (V,Wzp).
Axiom 4.34. —
Let € € p such that z := %W € pu(K). There is a bijection
E¢ : Uch(G) — Uch(G,)
with the following properties.

1. E¢ is stable under the action of Ngrvy(We)/W.
2. For all p € Uch(G), we have

Deg(E¢(p))(x) = +Deg(p)(+ ')

Azxziom 4.35. —

1. Let { € p(K), a root of the K-cyclotomic polynomial ®(x). Let (L, \) be a
®-cuspidal pair.
(a) (L, E¢(\)) is a ®(z~'2)-cuspidal pair of G..
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(b) E¢ induces a bijection
Uchg (L, \) — Uchg, (L., E,(\)) .
(c) The parameters of the ®(z~1x)-cyclotomic Hecke algebra Hg. (L., E.()\))

are obtained from those of Hw (L, \) by changing x into z~'x.
2. The bijection E¢ induces a bijection Fam(G) — Fam(G,) .



CHAPTER 5

DETERMINATION OF Uch(G): THE ALGORITHM

In this section, we consider reflection cosets G = (V, W) which have a split semi-
simple part, i.e., V has a W-stable decomposition

V=VieV, with Wy, =1 and ¢y, =1.

In addition, we assume that W is a spetsial group (see 3.44 above).

We show with the help of computations done with the CHEVIE package of GAP3,
that for all primitive special reflection groups there is a unique solution which satisfies
the axioms given in §5. Actually, a subset of the axioms is sufficient to ensure unicity.
More specifically, we finish the determination of unipotent degrees and Frobenius
eigenvalues except for a few cases in Gog and G3o in 6.5, and at this stage we only
use 4.16 for the pair (T,Id). Also we only use 4.20(3) to determine the families of
characters.

The tables in the appendix describe this solution.

5.1. Determination of Uch(G)

The construction of Uch(G) proceeds as follows:

1. First stage.
— We start by constructing the principal series Uch(G, 1) using 4.16(2)(c)
for the pair (T,1d).
— We extend it by Ennola transform using 4.13 to construct the union of
the series Uch(G, ¢) for £ central in .
Let us denote by U; the subset of the set of unipotent characters that we
have constructed at this stage.

2. Second stage.



96 CHAPTER 5. DETERMINATION OF Uch(G): THE ALGORITHM

— Let w; € W be a regular element of largest order in W, with regular
eigenvalue (1. We have an algorithm allowing us to determine the pa-
rameters of the (j-spetsial cyclotomic Hecke algebra Hy (wyp), which in
turn determines Uch(G, ¢1).

— We again use Ennola transform to determine Uch(G, (;€) for £ central in
W. Thus we know the series Uch(G, £(1), which can be added to our set
U;.

Let us denote by Us the subset of the set of unipotent characters that we
have constructed at this stage.

3. Third stage.
We iterate the previous steps (proceeding in decreasing orders of w, finding each
time at least one reachable ¢) until no Uch(G, ¢) can be determined for any new
¢. At each iteration we can use 4.20(2) (whose right-hand side we know in
advance) to check if we have finished the determination of Uch(G).

This will succeed for every spetsial irreducible exceptional group, except for
Gag, G32, where we will find a posteriori that 1 (resp. 14) unipotent characters are
missing at this point.

For these remaining cases we have to consider some series corresponding to 1-
cuspidal pairs (L, A).

Since we also want to label unipotent characters according to the 1-Harish-Chandra
series in which they lie, we shall actually determine (using a variation of the previous
algorithm) the parameters of all these algebras Hg(IL, A). We detail the steps (1)—(3)

outlined above in sections 5.7 to 5.11.

5.2. The principal series Uch(G, 1)

By 4.16(2)(c), the principal series Uch(G, 1) is given by the 1-spetsial algebra Hyy .
For x € Irr(Hw) we have Fr(x) = 1 by 4.16(2)(d) and 4.1(2), and Deg(p,) =
Deg(x) by 4.6(2).

5.2.1. Example: the cyclic Spets.—

Let G, := (C, ) be the untwisted spets associated with the cyclic group W = p,
acting on C by multiplication.

We set Z. := Z|u,] and ¢ := exp(27i/e).

The spetsial Hecke algebra Hyy attached to G is by 3.44 the Z.[zT1]-algebra H.
defined by

He = Ze[T1/(T = 2)(T = )= (T — ¢,
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We denote by X0, X1, -+, Xe—1 : He — Ze[z,271] the irreducible characters of H.,
defined by

xo:T—z,
xi:T— (¢ forl<i<e—1.

We denote by Sp,S1,...,Se—1 the corresponding family of Schur elements, and
by po, ..., pe—1 the corresponding (by 4.6(2) or 4.16(2)(c)) unipotent characters in
Uch(Ge,1). We have pg = Id.

S
By 4.16(2)(b) we have Deg(p;) = = since by 1.68 we have

Si

¢ —1

So = (|G|/|T|)s = .

o = (IG1/[T)r = ==

So for i # 0 using 1.68 for the value of S; we get

1-¢ -
D i) = —{7).
eg(pi) = —=a [[ (@ = ¢)

J#0,i

We will see below that we need to add % other 1-cuspidal unipotent char-
acters to the principal series before formula 4.20(2) is satisfied.

5.3. The series Uch(G,¢) for £ € ZW

From the principal series, we use (4.13) to determine the series Uch(G,¢) for all
Ee ZW.

Note that for p € Uch(G, &), this gives Deg(p) only up to sign.

In practice, we assign a sign arbitrarily and go on. However, for any character
which is not 1-cuspidal the sign will be determined by the sign chosen for the 1-
cuspidal character when we will determine 1-Harish-Chandra series (see below).

We illustrate the process for the cyclic reflection coset, which in this case allows us
to finish the determination of Uch(G.).

We go on with the example 5.2.1 of W = p, = (¢) where { = exp(2in/e).

We have Z(W) =W = {¢* | k=0,1,...,e — 1}.

We determine Uch(G,, ¢*) by Ennola transform. Let z be the lift of ¢ to Z(Byy).
The Ennola transform of Hy by z* (for k =0,1,...,e — 1) is

Hw (¢F) = Ze[T]/(T — Fa)(T =) (T = ¢,
and the corresponding family of generic degrees is

Deg(po)(¢~*x), Deg(p1)(¢C*x),...,Deg(pe—1)(¢ *x).
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It is easy to check that, for all t = 1,2,...,e — 1,

= —Deg(pi)(x) ifi+k=0 mode,

Deg(pi)(¢~"x) { ¢ {+Deg(p) | p € Uch(G,,1)} ifi+k#0 mod e.

Let us denote, for 0 < k < i < e — 1, by pi; the element of Uch(G., (") corre-
sponding to the (i — k)-th character of Hyy (¢*). Thus

Ck_cix € —1
e (@=CM@-0)’

Deg(pki)(x) := Deg(pi—i)(¢ ") =

and by 4.13,
Fr(pp,i) = (™.

With this notation, our original characters p; become p; o, except for py = Id which is
a special case. We see that if we extend the notation p; . to be —p; ; when k < ¢ the
above formulae for the degree and eigenvalue remain consistent. It can be checked
that with this notation E,;(pi k) = pi+jk+j, where the indices are taken (mod e);
thus we have taken in account all characters obtained by Ennola from the principal
series. We claim we have obtained all the unipotent characters.

Theorem 5.1. —
Uch(G.) consists of the 1 + (;) elements {Id} U{pi.r fo<k<i<e—1 with degrees and
etgenvalues as given above.

Proof. —
Using that Fegg_(x;) = 2, the reader can check (a non-trivial exercise) that for-
mula 4.20(2) is satisfied. O

5.4. An algorithm to determine some Uch(G, () for ¢ regular

Assume that U is one of the sets Uy, Us, . . . of unipotents characters of G mentioned
in the introduction of section 5.1. In particular, for all p € U, we know Fr(p) and
+Deg(p).

We outline in this section an algorithm which allows us to determine the parameters
of Hy (wy) for some well-chosen (-regular elements wep (we call such well-chosen ele-
ments reachable from U). Knowing the (-spetsial algebra Hy (wep), we then construct
the series Uch(G, ().
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First step: determine the complete list of degrees of parameters my ; for
the algebra Hy (wy).—

— If W(wyp) is cyclic this is easy since in this case (as explained in remark 4.23)
formula 4.22 determines the list of parameters my ;.

— If W(we) has only one conjugacy class of hyperplanes, for each p,, € U such
that Deg(py,)(¢) = £1 we get (as explained in Remark 4.23) the number m,, .
For the other m,, we can restrict the possibilities by using 4.22: they are
equal to some (N*f + NP 5./ ew (wp) Where B runs over the set of Rouquier
blocks of Hyy .
Finally 3.7(cs3) is a good test to weed out possibilities.

— When W (wg) has more than one class of hyperplanes, one can do the same
with the equations of 3.23 to restrict the possibilities; we are helped by the fact
that, in this case, the e;’s are rather small.

By the above, in all cases we are able to start with at most a few dozens of
possibilities for the list of my ;, and we proceed with the following steps with
each one of this lists.

Second step: for a given I, assign a specific j to each element of our
collection of mr ;.—

It turns out that when U has a “large enough” intersection with Uch(G, ¢), there
is only one assignment such that m;y; is the largest of the m;; and the resulting
Uch(G, ¢) contains U as a subset.

However, trying all possible assignments for the above test is not feasible in general,
since W (wep) can be for example the cyclic group of order 42 (and 42! is too big).
It happens that the product of the e;! is small enough when there is more than one
of them; so we can concentrate on the case where there is only one e, that we will
denote e; the linear characters of W (we) are the det’ for i = 0,...,e— 1, and we will
denote wu; for uy , and p; for p,, when 6 = det’.

If p; € U we can reduce some of the arbitrariness for the assignment of m to j
since 4.8 implies that the root of unity part of Fr(p;) is given by Citlap+A,)a/d
which gives ¢ mod d.

We can then reduce somewhat the remaining permutations by using the “rationality
type property” Pr(t,z) € K(x)[t].

We say that ( is reachable from U when we can determine a unique algebra Hy (we)
in a reasonable time. Given U, we then define U’ as the union of U with all the
Uch(G, () where ( is reachable from U, and £ € ZW (see section 5.1).

5.5. An example of computational problems
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The worst computation encountered during the process described above occurs in
Go7, at the first step, i.e., when starting from the initial Uy = UgeZW Uch(G,¢),
we try to determine Hy (wyp) for w of maximal order. In that case, W(wy) is a
cyclic group of order h := 30. We know 18 out of 30 parameters as corresponding to
elements of U. For the 12 remaining, we know the list of m; ;, which is

(1,1,1,1,3/2,3/2,3/2,3/2,2,2,2,2]

and there are 34650 arrangements of that list in the remaining 12 slots; in a few
minutes of CPU we find that 420 of them provide P;(¢,z) € K(x)[t] and after a few
more minutes that just one of them gives a Uch(G, ¢;,) containing the U N Uch(G, ¢3)
we started with.

As mentioned in section 5.4, at the end of this process, we discover by 4.20(2) that
we have found all unipotent degrees, except in the cases of Gog and G32, where we
will find a posteriori that 1 (resp. 14) unipotent characters are missing.

5.6. Determination of 1-Harish-Chandra series

We next finish determining Uch(G) for Gag and Gsz, by considering some series
corresponding to 1-cuspidal pairs (IL, ). We will find that in G the missing character
occurs in the series Uch(Gs, p2,1) (where pa 1, as seen in 5.1, is the only 1-cuspidal
character for Gs, and where Wg(IL, \) is G(6, 1, 2)), while in G32 the missing characters
occur in Uch(Gs, p2,1) and in Uch(G3 x G3, p2,1 ® p2.1) where Wg(L, A) is respectively
Gog and G(6,1,2). In these cases, Wi (L, \) is not cyclic, so by the reduction to the
cyclic case 4.19, the computation of the parameters of Hg(IL, A) is reduced to the case
of sub-Spets where all unipotent characters are known.

Following the practice of Lusztig and Carter for reductive groups, we will name
unipotent characters by their 1-Harish-Chandra data, that is each character will be
indexed by a l-cuspidal pair (L, \) and a character of Hg(L,\); thus to do this
indexing we want anyway to determine all the 1-series.

Let us examine now the computations involved (in a Spets where all unipotent
characters are known).

Stepl: determine cuspidal pairs (L, \).—

First we must find the W-orbits of cuspidal pairs (L, A) and the corresponding
groups Wg (L, \), and for that we must know the action of an automorphism of IL
given by an element of Wi (L)) on A € Uch(L).

Cases when this is determined by our axioms 4.3 and 4.16(2)(a) are

— when £Deg()\) is unique,

— when the pair (£Deg()), Fr()\)) is unique,
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— when A is in the principal 1-series; the automorphism then acts on A\ as on
Trr (V7).

In the first two cases Wg (L, \) = Wg(L).

The above conditions are sufficient in the cases we need for Gog and G3o. They
are not sufficient in some other cases.

Now, for 1-series where Wg (L, \) is not cyclic, we know (by induction using 4.19)
the parameters of Hg (L, A). Since in the cases we need for Gog and G3o, the group
Wg (L, ) is not cyclic, we may assume from now on that we know all of Uch(G).

Step 2: find the elements of Uchg(LL, A).—
A candidate element p € Uchg(L, \) must satisfy the following properties.
— Deg(p) must be divisible by Deg(X) by 4.16(2)(b).
— By specializing 4.16(2)(b) to « = 1, we get, if p = p,,

Deg(p) L]
WelL 3| (g ) (0 =x().
Then x(1) must be the degree of a character of [Wg(L, \)|.

— Formula 4.16(2)(b) yields a Schur element S, which must be a Laurent poly-
nomial (indeed, we assume that the relative Hecke algebras are 1-cyclotomic in
the sense of [BMM99, 6E], thus their Schur elements have these rationality
properties).

If there are exactly |Irr(Hg(L, A))| candidates left at this stage, we are done. If

there are too many candidates left, a useful test is to filter candidate |Irr(Hg (L, \))|-

tuples by the condition 4.18. In practice this always yields only one acceptable tu-
ple().

Step 3: Parametrize elements of Uchg(LL, A) by characters of Hg (L, \).—

This problem is equivalent to determining the Schur elements of Hg(L, \), which
in turn is equivalent to determining the parameters of this algebra (up to a common
scalar). Thanks to 4.19, it is sufficient to consider the case when Wg(IL, A) is cyclic.
Then one can use techniques analogous to that of section 5.1.

For example, let us consider the case where G is the split reflection coset associated
with the exceptional reflection group Gog. Let us recall that G, denotes the reflection
coset associated with the cyclic group p, (see 5.2.1).

We have Wg(Gs, p2,1) = G(6,2,2). To determine the parameters, for each hyper-
plane I of that group, we have to look at the same series Uch(Gs, p2,1) in the group
Wy which is respectively G(3,1,2), G4 and ps X p,; in each case the relative group
is G, where ey is respectively 3,2, 2.

(1) This is not always the case if one tries to determine ¢-Harish-Chandra series by similar techniques

for ¢ # 1.
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Remark 5.2. — In each case we can determine the parameters up to a constant,
which must be a power of x times a root of unity for the algebra to be 1-cyclotomic;
we have chosen them so that the lowest power of = is 0, in which case they are
determined up to a cyclic permutation. We have chosen this permutation so that
the polynomial Py (¢, x) is as rational as possible, and amongst the remaining ones we
chose the list my,...,mre,—1 to be the lexicographically biggest possible.

In our case we get that the relative Hecke algebra Hg(LL, ) is
HG(6,2,2)(1a C3.’E27 <§x2; !E3, -1z, _1)

Here we put the group Wg(L, A) as an index and each list separated by a semicolon
is the list of parameters for one of the 3 orbits of hyperplanes. We list the parameters
in each list u7,...,us ¢, —1 in an order such that u; ; specializes to gg’l.

Similarly, in G3a, for Uch(Gs, p2,1) we get the Hecke algebra

HGQG ($3, C?n C??a z, _1)
and for Uch(G3 x G3, p2,1 @ p2,1) we get

7-lG(G,l,Q) (2173, _ng?)a Cg.’IJQ, _]-7 C§7 —C3.T2; {L'3, _1) .

5.7. Determination of families

The families can be completely determined from their intersection with the prin-
cipal series, which are the Rouquier blocks which were determined in [MRO3], and
4.20(3).

Indeed, the only cases in the tables of Malle and Rouquier where two blocks share
the same pair (a, A), and none of them is a one-element block, are the pairs of blocks
(12,13), (14,15), (21,27) in G34 (the numbers refer to the order in which the families
appear in the CHEVIE data; see the tables in the appendix to this paper).

For each of these pairs, we have a list L of unipotent characters that we must
split into two families F; and F5. To do this, we can use the axiom of stability of
families by Ennola, since in each case all degrees in L are Ennola-transforms of those
in the intersection of L with the principal series, and there are no degrees in common
between the intersections of F; and F» with the principal series.

5.8. The main theorem

We can now summarize the main result of this paper as follows:
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Theorem 5.3. —

Given a primitive irreducible spetsial reflection group W, and the associated split
coset G, there is a unique set Uch(G), with a unique function Fr and a unique (up to
an arbitrary choice of signs for 1-cuspidal characters) function Deg which satisfy the
axioms 4.1, 4.8, 4.6, 4.18, /.16, 4.19 and 4.20.

Apart from the primitive exceptional type spetsial reflection groups, there exist
two further doubly infinite series of irreducible complex reflection groups: the groups
G(e,1,n), e,n > 1, (e,n) # (1,1), and the groups G(e,e,n), e,n > 2, (e,n) #
(2,2). Unipotent characters and Frobenius eigenvalues for these reflection groups
were introduced in [Mal95] in a combinatorial way. Note however that Frobenius
eigenvalues in [Mal95] by definition are roots of unity, with no power of x attached.
Here we comment on the present state of knowledge concerning the axioms set out for
the exceptional type spets in Section 5, viz. the Axioms 4.1, 4.2, 4.3, 4.6, 4.13, 4.16,
4.19, 4.20. Note that [Mal95] does not contain any unicity statement about the data
constructed there. While the methods presented here will certainly make it possible
to prove unicity in given small examples, a general proof is not known at present.

We discuss the eight relevant axioms in turn.

Axiom 4.1 does not apply directly to this situation, since the corresponding spets
is simple and not a torus. But it is used (implicitly) in [Mal95] for the description
of unipotent characters of all reducible proper subspets.

Axiom 4.2 is satisfied by [Mal95, Folg. 3.18] (for G(e, 1,n)) and [Mal95, Folg. 6.14]
(for G(e, e, n)).

There is an action as in Axiom 4.3 which we now describe: for W = G(e,1,n) <
GL(V) we have that N := Ngro)(W) = WZ(GL(V)) (see e.g. [BMM99,
Prop. 3.13]), and the action of N is trivial on Irr(W) as well as on the unipotent
characters. For W = G(e,e,n), we have again by [BMM99, Prop. 3.13] that
N = NgrLw)(W) equals G(e,1,n)Z(GL(V)), unless (e,n) € {(3,3),(2,4)}. The
second exceptional case corresponds to the generic finite reductive group of type Dy,
and there an action of N on unipotent characters has been defined by Lusztig. In the
first exceptional case, it is easy to define an action of N on the unipotent characters
which has the desired properties. In the general case when N = G(e, 1,n)Z(GL(V)),
let s be the standard generating reflection of G(e, 1, n) of order e. It acts on unipotent
characters of G(e,e,n) by permuting cyclically the unipotent characters belonging
to a fixed degenerate symbol (i.e., any symbol with non-trivial symmetry group),
see [Mal95, Def. 6.3]. The definitions given for unipotent characters and Frobenius
eigenvalues shows that Axiom 4.3 is satisfied by this action.

The construction of a bijection as in Axiom 4.6 is a particular case of [Mal95,
Sétze 3.14 and 6.10], which also yields (2) (as a consequence of the main result of
[GIMOO]). Property (3) is shown in [Mal95, Satz 4.21] for G(e, 1,n), but it was not
considered for G(e, e, n).
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The fact that Ennola transforms preserve unipotent degrees up to sign as in Ax-
iom 4.13 is shown in [Mal95, Folg. 3.11 und 6.7], but the behaviour of Frobenius
eigenvalues under Ennola transform has not been determined.

Axiom 4.16 on Harish-Chandra series in general was shown in [Mal95, Sétze 3.14
and 6.10], which also shows that the parameters are determined locally, as required
by Axiom 4.19.

The families for types G(e,1,n) and G(e,e,n) were introduced and studied in
[Mal95, §4C, 6D]. Axiom 4.20(2) is proved in [Mal95, Sitze 4.17 and 6.26], and
Axiom 4.20(1) is implicit for example in the hook formulas in [Mal95, Bem. 3.12
and 6.8]. The final part of Axiom 4.20(3) is not considered in [Mal95].



APPENDIX A

TABLES

In this appendix, we give tables of unipotent degrees for split Spetses of primi-
tive finite complex reflexion groups, as well as for the imprimitive groups Z/3, Z/4,
G(3,1,2), G(3,3,3) and G(4,4,3) which are involved in their construction or in the
labeling of their unipotent characters.

The characters are named by the pair of the 1-cuspidal unipotent above which
they lie and the corresponding character of the relative Weyl group. As pointed out
in 5.2, this last character is for the moment somewhat arbitrary since it depends on an
ordering (defined up to a cyclic permutation) of the parameters of the relative Hecke
algebra, thus may have to be changed in the future if the theory comes to prescribe
a different ordering than the one we have chosen. Also, as pointed out in 5.3, the
sign of the degree of 1-cuspidal characters (and consequently of the corresponding
1-Harish-Chandra series) is arbitrary, though we fixed it such that the leading term
is positive when it is real. For the imprimitive groups we give the correspondence
between our labels and symbols as in [Mal95].

For primitive groups, the labeling of characters of W is as in [Mal00].

The unipotent characters are listed family by family. In a Rouquier family, there is
a unique character 6 such that ag = by, the special character (see 3.49), and a unique
character such that Ay = By, called the cospecial character, which may or may not
coincide with the special character. The special character in a family is indicated by
a * sign in the first column. If it is different from the special character, the cospecial
character is indicated by a # sign in the first column.

In the third column we give Fr, as a root of unity times a power of z in Q/Z (this
power is most of the time equal to 0).

We denote the cuspidal unipotent characters by the name of the group if there is
only one, otherwise the name of the group followed by the Fr, with an additional ex-
ponent if needed to resolve ambiguities. For instance Gg[(3] is the cuspidal unipotent
character of Gg with Fr = ¢, while GZ[—1] is the second one with Fr = —1.
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For each group we list the Hecke algebras used in the construction: we give the
parameters of the spetsial (-cyclotomic Hecke algebras of compact type for represen-
tatives of the regular ¢ under the action of the centre; we omit the central ¢ for which
the parameters are always given by 3.43 and its Ennola transforms.

We also list the parameters of the 1-cyclotomic Hecke algebras attached to cuspidal
pairs, chosen as in 5.2.

For each of these Hecke algebras, the parameters are displayed as explained in
remark 5.2.
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A.1. Irreducible K-cyclotomic polynomials

Q(i)-cyclotomic polynomials. — &) = x —i, ®] = x +i, & = 2% — i, ] =
2?2 i, D)y = 2% —ix — 1, )y = 2?2 +ix — 1, B = 2t +ixd — 2% —ix + 1,
QU =gt —ix® — 2% +ir + 1

Q(¢3)-cyclotomic polynomials. — &5 = z — (3, ®§ = 2z — (3, O = = + (3,
B =0+ G, By = o~ o O = G, By = o (G WY = 27 o, O =
21+ G+ Gat Ho+ G O = ot 4 Gt + G+ a4 G, Py = 27 (G, Oy = 274G,
Py = 2% + Gz + (ot -|- 3 + C3£L’2 +Gx+ 1, Y = 25 + Zad + Gat + 23 +
Ga?+ Gr+1, Dy =2 + 3, DY, = 2t + G, OY) = 2t — Ga® + Ga? -z + (3,
Oy = ot — (Fa 4 Ga? —w + (F, Pl = a® — (G2’ + Gat — 2 + (G2’ — G+ 1,
Py = 2% — (3a® + (Fat —2® + (g2 — Fr + 1

Q(v/3)-cyclotomic polynomials. — ‘bg) =22 -3z +1, @gg) =22+ 3zx+1

Q(v/5)-cyclotomic polynomials. — oL =22 + 1_\/535-1-1 O = 2 + 1+\/5x +1,
5

<I>’10:x2+%‘/5x—|—1,¢)’1’0:x2+ 1+fx_|_1 =t + 17\/33 1+f 2+

717\/53:4—1 oYy = xt +*1+‘/5x3+1 f 24—7”‘[364—1 <I>30—m —&-12\[ 3+
1f2+1fx+1 o, = 1+2f3 1+2f2+1+2fx+1

Q(v/—2)-cyclotomic polynomials. — @ém =22—/—22—1, @éG) =224+ —22—1,
@éz) =t 4+ /=223 — 2% — /20 +1, @éi) =zt — /223 —2?+ /22 +1

Q(\/ 7)-cyclotomic polynomials. — &, = 23 + 1_\Fx2 + _1_2ﬁx -1, 9! =
x + 1+\/7 2 + 1+\/7x_ 1 (b 1+\/7 2 + 1_2\/_77:1.:_"_ 17 @/1/4 — x3+
—1— F 2 + 1+fx +1

4= 2%+

Q(v/6)-cyclotomic polynomials. — @éi) = 2% — V623 + 322 — V62 + 1, <I>(6)
z* 4+ V623 + 322 + V6 + 1

Q(¢12)-cyclotomic polynomials. — <I>§Q =24y, @ 12) =z+({3, ® 12 =+ (12,

Q(v/5, Cg)-cyclotomic polynomials. — <I>(5) =z? + %x + (s, <I>§65) =z2+
(1- f)(sl. + (3, @ O = 22 + (1+\2@)Ca +C 2, (I)g = 22 4+ (1—\2/5)C3x+ <§7 (I)i(’)E())) _
r +( 1+f)43x_|_< @(6) g T Q‘f)<3a:+C3, q)g)) — 224 (*1+2\/5)<3.$+<§7
(I)é%):$2+( 1— \[C3$+C2

Q(v—-2 C3)-cyclot0m1c polynomials. — <I> =2 +V/-2CGr — (5, fI)éiO) =% —
V2 — Gy @4y = 2% 4+ V2w - G, <I>§¥f’ = = V=202~ G
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A.2. Unipotent characters for 73

gl Deg(y) Fr(y)  Symbol
v 1 1 1 (1,,)
Zy | M rd 2 (,01,01)
#QE | 20 1 (01,0,1)
x G | 00y 1 (01,1,0)

To simplify, we used an obvious notation for the characters of the principal series,
that is (3 denotes the reflection character, and denoted by Z3 the unique cuspidal
unipotent character. The corresponding symbols are given in the last column.

A.3. Unipotent characters for 7,

ol Deg(v) Fr(y) Symbol
1 1 1 1,,,)
-1 sy 1 (01,0,1,0)
* 0| TLHad,df 1 (01,1,0,0)
702 | =ttla99) -1 (0,,01,01)
79212 Strxd P, —i(,01,0,01)
#—i| Hlad,9) 1 (01,0,0,1)
720 | ==la® ) —1 (0,01,01,)

We used an obvious notation for the characters of the principal series, and the shape
of the symbols for the cuspidal characters.
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A.4. Unipotent characters for G,

Some principal (-series
Ca: Hyz,(ix®,i, iz, —i)
(3 Mz (GG, —(3, C3, — (s, (5, — ()
3+ Mz (G3x?, — (3, (3, —C3w, G5, —C3)

Non-principal 1-Harish-Chandra series
Ha, (Z3) =Ha, (xS’ _1)

ol Deg(y) Fr(y)

* P10 1 1
¥ Gon | L0, D, DY 1
# os | T 00y, 1
Zy:2 | 50030, ¢z
* ¢)3,2 IQq)g(I)(; 1
¥ 14 | L0, DY 1
¢2)5 %$4(I)%(I)6 1
Gy St didg -1
Zy: 11| =300, 0,0, 2
# s | Yol 0Ld, ) 1

A.5. Unipotent characters for Gg

Some principal (-series

4-3 : 7—[212(C3x27—ix,—C3m7C172x1/2,x,(12x, —1,7;([5,C3£l',C12(E1/27—Cg,CZQIL')
C§ : HZ12(<§x27<i§2m7_<§7<1121(E1/27<§x7 —ifE,—1,C1121(E,:L‘7<i52$1/27—<§$7i$)

Non-principal 1-Harish-Chandra series
Heo(Z3) = Hz, (23,023, -1, —ix®)

5 Deg(y) Fr(v)
* 1,0 ! :
* @21 Mﬁ#m%%@f% 1,217 !
b5 ixq)gq)iq)u 1
Gha | CEACID a2g 512G 0,0
1,4 *12*3141)&/(1)421(1)%/(1)12 L
2l Lrdiejds0sdy) =i
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ol Deg(y)  Fr(v)
G3-1] | G 029,00, 0pel,0l) -1
GG[_ 32] @m@%¢2¢3¢4¢2¢/{2 — 32

Zs: 1 %‘/-5330‘1)1‘132‘1)3@12 3
G3-¢3] SIS PR ST S T /T TP
#oofs | C L e a3el 0l e, 0l 1

G - =20 D3 by DY, i
Gi-1] | U e 0t epet, el 1

¢1,8 %i‘@g@i@g@lg 1
Ghs | O 03010 0o, @) 1

Z3 11 %m%ﬁ%%%fb’{z 3
Ge[(12] %w@ﬁ’%%@&e (2
Gol[-1] | CHDHD 920,007 9, 0()) 1

$1,6 120306 P12 1
Ge[—1i] V31233 DY) —i
51 —i L JT S T Y I 18 2
Gi[-1] | SO 10t0,04 0p0p0l) 1
* ¢3,4 $4¢'3¢'6¢'12 1

Gs[(3] S 0I03D3Ds  (Ba'/?

1 1,552
* 2,5 527 P5 P12 1
Gs[Cd] St PI P30 (Jal/?

¢2,7 11’5@3(}12 1
* ¢1 10 3—\/—73$102(I>/3/q>2i ll/é/ 1

) 6
# fr14 Y3100 by 0 1
Z3 =1 _T\/jdxl()(plq)gq)z; ?




A.6. UNTPOTENT CHARACTERS FOR Gg 111
A.6. Unipotent characters for Gg

Some principal (-series
<8 : HZ3(<§x37C87<8x7<ga<83x3C§)7C§)x’487)
Gt Hazpy (G2, Gy —C, (a2, G, Coz, —1, (T, G, Groat /2, =G, (o)
Cg . 7'[le (C§$2, <152$1 _C??a C1121£L‘1/27 C??xv <1527 _L <1121:E7 C?%a <152$1/27 _C37 C1121)

Non-principal 1-Harish-Chandra series

Hay (Zi220) =Mz, ($37 i, —1, _ixz)
Hay (ZA(L)ZH) =*Hz, (:C37 2 —1‘2, _i)
Hey (Z219%2) = Hy, (23,2, —1, —i)
gl Deg(y)  Fr(v)
* 1,0 1 1
* b2.1 L 1Py @ PP DY, 1
D24 10P, PP 1
# (é/277 %J)q)gq)zq)ﬁq)gq)/lz 1
ZiZQO 01 71;;137‘1)1(1)3(1)21@8(1)/1/2 -1
Z912 1 SLa®1 PP PPy —i
Zi022 01 _ijlx@l@g(bg(bg@’w -1
* ®3,2 %H$2‘I>3‘1’4‘I’6‘I)/3'¢’12 1
3,4 12203 P 1o 1
i ®3.,6 H122050, PP P2 1
Zi022 1 #x2@1¢2¢3@6¢g@12 —1
Z2212 —1 %ix2<1)1<1)2<1>3(1)4<1>6<1)12 —1
ZP20  —i | =201 0y 3D PPy -1
Gs[C{] S PTRI03 DDy (fu!/?
* (254}3 %$3¢i@8¢12 1
Gs|¢F] S PI PP PPy (Ja!/?
¢475 %ng)i@gq)lz 1
* P16 %xﬁ‘l’:a@f@fj‘bg@/fz 1
# P18 %21936@3‘1’22‘1)6@8‘1)/12 1
®1,12 iCUG‘IM(I’G@S(I’m 1
12/,7 _71336(1)2@4(1)2{@6(1)/8/(1)12 1
¢2713 %.236@2‘1)4@2(136@/8@12 1
®2,10 L2503 P 1
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5 Deg(y) Fr(v)
3,8 170304 P51 L

ZFQO .1 —Tix6q>1<1>3<1>4<1>ﬁ{<1>g‘1>12 -1
z1022. Fa0 D, P3P, D PY Do -1
71220 25,0y P3P D5 DY, -1
Z1022 . 1250, 0,035 P, —1
2912 i | Fab0, 03D P, DD DY, —1
7912 —i | Fa00, 0D DDy P, —t
Gsl1] R G TI
Gsli] | §a°030, @@L 0eQLTY,
Gifi | Satate,0 0fm@iel,
Gis[Cs] ER S
Gs[¢3) A L L
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A.7. Unipotent characters for G4

Some principal (-series
<4 : HZM(*:EQ? CQIA%:E’ 7(3‘%; z1/27 §$2/3, 222513, x, C24xa C3a ix1/2a 7(??‘%5 <§4$, ,IZ/S’ <§4$7
CBxa —:L'l/2, Cga CQlixv -z, 214%1'7 <3£L'2/3, _ixl/zv Cgmv CQIZT/)

Gs - Hzu (—ix?, (132, Cro, Qex/2, (Fo®/3, Crom, (Fsx'/2, =3, (B, i, (g, o,
—i$2/3, C1521', C%ixa C]?le/Qa 2121‘7 C’{g.ﬁ, Cll()l$1/27 ??x7 C12$2/3, —i.I‘, C%E.’L‘, _43'1;)
Cg : 7-LZ24 (Z'132,<321',<211.T, —i13,<11211'2/3, —<313,C161'1/2,61121$,<222$,<136$1/27C24$,C121'7

i$2/3, 7(??‘%3 41723 il’, C274xa Cva <?6:C1/27 Cir)Qxa CZsz/Ba Clléxl/za 11217 41721’)

Non-principal 1-Harish-Chandra series
HGM (Z3) = HZG ((ES, —C§$4, C3x4v _17 C32x47 —C3£E4)

v Deg(y) Fr(v)
x P10 1 1
T - 2 —G3 O PP P q)'QCI) P 2
31 (3 5 TR1PaP3 PP DLy P2y 3
G41¢3] L1030 04 Dy YDy DYy Poy 3
Z3: (3 53201 P30 Dy DD P10 Ph, 2
GR4-¢3] $ 100,030, PsP1oPh,  —(3
¢2,4 %%x@%q)éQ(I)g2q)8(I)l2(I)24 1
2
b1,16 820, Dy PEDs DL oy 1
Gra[1] T2 D3P, DY Py B Poy 1
¢34 52030, 0 Dy D Day 1
G14[Cs] —Y05 1 D3PI, DED1, P, €
e V0 293030, DD 10 DY, 8
o7 | EE0% 1525, 20, 520 b1, P4, DL 1
£ o | EEY8,020,20,520) 0,3y, 5 1
Gol-1] | C20%02920,00700 01,05,05) 1
Gual—1] | C=Y0% 152028,07° 00 by,0y, 80 —1
G24li] Yo a30303030 o0y 0,
Gil-i] radieieieie o ey, ey —i
24
G3[—i] =00 102 P3DID2DL DL DY, D) i
Gl Croeoielelelel ener, el
Zs: —(3 01D PIPL D, By By DYy Boy 2
2
Galc3] Frie 0 YRy
Z5: (3 00D, DI,y PP D 2D, 2
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g
Gra[—(3
3] <2 D
23 eg
¢178 63?(1)2(1)2(1)2(1)4(1)”(1)8(1) (I()?:) Fr(fy)
P28 @'/2(1)4@2@ /12 o —G
) C?’ 25112 8 P15 P2y 1
$3,2 2] 2B D, DD
G2 2 8 12(1)24 1
14[1] & q)3(1)4(1)%2q)8¢)’1’”q)
G? 3 PP 2 ¥24 1
G214[[<§] vad q>21§23 B P D1o P4 1
1 2 L P2
$2,11 (—2— \f)c3 03 235 253020 ,D2D 1, B! (s
1 2
# ¢2’5 (= 2+\[)<3 CI)Q(p 2@4(1)2@(5)(1)12(1) (12;; g
o "
G- (2+f)c YD, PED ()q) o 5. 1
G3 CEVOS 12920, ) 12 4<I>24)
o) | ey 4% ‘P“’)cb /ol 1
51 5 d2P2 ) 12P5, P )
Ghali s 1 10,94 () -1
(1] \/ég AR IPL ( 1
G4 1202020202 & 1295, D5, B
14[—1] fcg 0202 DZDg )‘I)"”cIY q)(n) 1
Gra[~] f( DIDIPFPD (5)(1)////(1), ( 2) i
G4 24 - ¢2©2®2¢2 (6) 12 24(b o
14ld] J6c2 O g1, B i
o St 1?0302 D2 12 P24 Doy .
1,12 10503050 (5)(1)//// , i
! 1 8 12<I)24®( 2)
56 1o®;0305 o i
on 1 §PsP12P2s
2 1r200gd 1
GL[-1] éxq)%@gq)ﬁ@g@mém )
4
G%4[<3] %x¢2®2¢ 6 12(1)24 1
G 1 2 1=3 1 PsP10P
e O R
Cralcsl P‘”‘I’%‘I’%Iu@“?@g@ﬁi% Gs
G§4[<3] Tzlzq)%égq)/ﬂg @8 1/,2/@24 G
G14[C31] ;—2133@%@%@,2@4 g @1 Doy ,
GialCLT V6 4P P
14[<24] 12 x@%qﬂ@g@ 5 24 <3
GY V6 .52 22304 P PPy 11
14[(3] 2+\/612 x¢1@3¢§®4q>2¢ o 2 1
G4[Cs] 200103 6P8P12 17
° 225 20,0200 12D 24
G4 ¢3] 246m<1)%¢)2¢) ©2 12P5, G
G 24v6 20, D20, DY)
14[—(3] IfI)QCI)?(Iﬂ(I) 24 G
G —2+f 4<I>8<1)12(I)(5)
14[6r2] Sr0t03e30 T
G2 f ) 4<I>8c1)12q)(
14[C12] \z/é 2 D202D2P, D20 q)%él) —(3
G14[C12] \Q/Sx(b%q)%q)gq)élq)gqfq)%% <172
2 V6 6 Ps
St 5o 0105030, 050 it
) P45 ﬂl’@%cp?qﬂ@ 2 8724 C12
# 3—vV/—3_5 273 4@6@8(1)(7) -
P47 V=3 050, B, DY 24 7,
, 3+v=3 3P40 Ps P12
Zs 1 =27 DY O, Dy 2 1
~V=3 5 3P4 PP P12Poy
3 z ¢1®2¢4® ) 1
gP12Poy <§
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v Deg(y)  Fr(v)

* g,G . %foD%CI)%(I)lg(I)% 1
G2,0¢3) | $a5030304° D40y 05y DY,  (Fa?/
Gul@3] | $a00I030Y 0,0 05y BY, Gt/
# P35 F20DFBFD1,Poy 1
GR(G5) | St 030300, 00 0s10Y, (5277
Gua[Cl] | 2003304 B0 By DY, (Fal/
#3,10 22803021, Doy 1
GLIGR) | § 0030304 0,0 Bedyy 2y, (Fu/?
GG | $at03 030y 0,0 0y BY,  (Fal/?
$2.15 TO0ID2Dsdy, 1
x (oo 1992023 Dy, 1
?2,12 1290, P15Poy 1
GY,[-1] 129033y Poy -1
G1,[-1] 1002 204d,y, -1
G14CT6] 20D 303D B (Toat/?
G14K176] %ﬁxg‘b%q’%q)g@4¢%‘bl2 C1761'1/2
e 20 DIDFR3D, DDy, ([Pl
Gha[Cig] 200203030, 0201, (J2ut/?
* 91,20 %qu’é@g@ﬁg‘bﬂ 1
# 01,98 %5520‘1’9:@%@/1%/@/24 1
Zy:—1 Y3200, By b, By 2
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A.8. Unipotent characters for G3; >

Some principal (-series
—1: HZG (xza nga C3a x, 4327 C3I)

Non-principal 1-Harish-Chandra series
HG3,1,2(Z3) = HZs(]-v CBan ??xz)

5 Deg(v) Fr(y) Symbol
TN 1 (12,0,0)
Zy: (3| Lad yd,d) 2 (,01,02)
Zs: G —T@m@12q>2q>g<1>'6 3 (,02,01)
— ;2

.2 5Py P 1 (01,0,2)

3 3 6 s Uy
GEy | Sad®id®y G (0,012,)
# 1.1 1a®,04° 1 (02,0,1)
2. 520y D 1 (01,2,0)
« 1.1 120,04 Y 1 (02,1,0)
G103 S P2 Dy D! 0,,012
3,1,2 3 T®1%2%6 € (0,,012)
« 1.1 23Dy P 1 (01,1,1)
x 2. 1 1 2,,)
Zy:1| 50,0, 2 (1,012,012)
# .01 | 250 1 (012,01,12)
x AL | 32350 e 1 (012,12,01)

We used partition tuples for the principal series, the shape of the symbol for cus-
pidals and notation coming the relative group Zs for the characters Harish-Chandra
induced from Zjs.
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A.9. Unipotent characters for Gy,

Some principal (-series

Z Hye(Ga™,—Ga™/?, Gad, —Gat, Ga™/2, - ()
CB : HZG (<§$77 _C32.a C§x7/27 —<§1'4, 32(E3, _C§x7/2)

C? : HZM(C'?IB,—C?$2,C$$3/27—C?.Z'Q,C?(E,—C$$,<$$2,—€$$2,,’E7—<$$3/2,C7$7 _C$7
C’?aja —C?%Q)
<7 : HZM (C’?Iﬁa _C’Z?l7 Zz, —C?$, C?xB/Qa _C’?Z‘Qa C%Ia _C’?an C?Ia _C’?an C?[Ea _C’?I3/27

4;1127 7(7‘%2)

Non-principal 1-Harish-Chandra series
HG24 (BQ) = HA1 (1‘7, _]-)

¥ Deg(y)  Fr(v)

* P10 1 1
¥ dz1 |  Ypa®z0iPePLPY, 1
# b3z | TLTrdyP,0cPUD), 1
b6,2 100336 P 1y 1
By:2 12033 Pr -1
GlaaCH) VT 0303030, P6 4
Gaa[C2] VT 0303y P, P 2
G24[C7] YT 103303y <
*  ¢r3 2307 Py 1
x Psa 12 030,0,0,, 1
# P85 $21 030, PPy 1
Gauli] 12403030, 07;  ixl/?
G24[—Z'} %$4<I>:I’(P3q)4(1)7 —i$1/2
* 076 25D Py 1
¥ g | LLaBDyD, DL, 1
# d310 | Y abD30,050407, 1
®6.,9 37505030 P 4 1
By:11 1280393D4P; -1
Goa[Z] | L Ta80303D;B, P 3
Goa[3] | LT a803030,0,0 5
Gaul¢§] | =L 180} 0303,4Ps g
* @101 z?! 1
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A.10. Unipotent characters for Gos

Co : HZ9(<9x 7 9117 ;<97<9=T C

Some principal (-series

%65, G, Gga?

. G5)

_7:7 Clva Cir)2‘r2)

C4 7'[212( i »412» C12$7 2, <12x7 Cir)za —ix, 4125527 <1121$»
HZIZ (Z{E?’, C172$27 C1121x’ iv Cl?xa C1121.’132, i.%‘, <1727 <f2w7 _ia C172x7 <1121)
—1 e, (22, C3, 55—, G5, G3)
Non-principal 1-Harish-Chandra series
Heos(Z3) = Has (2, 43, (32, —1)
Hey (23 @ Z3) = Hyy (23, — (223, (322, —1, (2, —(32%)
HG% (G4) HZ%(]- <3£L' y 2 4)
v Deg(y) Fr(v)
* 91,0 1 1
% ¢3’1 3— \/7 (I)//(I)/(I) //// 1
# S5 IS PR o 1
Zs5: 2., V=300, By D, Dy ¢2
08,3 1023, PPy 1
* P62 1220305 D, DY D1y 1
# P4 L2230 D4 DY P1o 1
2,9 %3332‘1’4‘1’%2‘1’9‘1’12 1
Z3® Z3 : —(3 L3220, Dy PY DY Py Cs
Zy: .2 | =82020,8,84° 0,y D) Do 2
$2,3 §$2‘1>4‘1)’6’2‘1)9‘1>12 1
Zs: 2| Sald 0,020,840 P, 2
Zy@Zs: 1| Sal0R0,0U0,0p0hd1 (s
x 04 2100, 0 oDy 1
do.s X SR T T Y 1
®3.6 12103030 P 1o 1
®9,7 3%@3:4‘1)33@4@%’@9@12 1
4 ‘s e B S Tl Al WY TP
Z3® Zs: G R s L JL AL 2L SO
Gi: G | 220 DIB3DLDUDDYy 1
Zy:1.1 | SLat® D300, 01 DedY 2
Gas[—(3) @$4‘1’?@2@§@4% —(3
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v Deg(y) Fr(v)

1 $3 Agn2 2 "
3,5 R E B PR N S 1
Gas[(3] VP2 930,04 gDy Cs
Zy: 11| =200, 0304 0,0, DY 2
313 2104 By DFDo P 1
Gi: (3 7*33/?%4@%@3@;;@%@9@'{5 -1
Z3® Z3: —(3 +1 DI D3P, D" Dy DY) (3
% bs.6 3V 0020, 020 D1 1
7 ®s,9 %ﬂwtﬂ)@%@@%%‘bu 1
Zz:.1.1 —V=3 260, BLD5 04 PEDo 2
* ¢é},8 %xgééq)zlq)g@gq)lg 1
# ¢6,10 374_\6/?3:68@{3/@4@/6(1)9(1)12 1
Z3 :11.. _T\/jgxgq)lq)gq)4¢gq)12 ??
* b1.12 120,007 0y @Yy 1
Ph13 =52 1120; 04 DBl 1o 1
Zy: .11 | =2a120, 0,04 0, 0L 4L 2

2

$3,17 ‘TC?'x12<I>3<I>g<I>6<I>§<I>12 1
Zy: 11, i?;?xl?@l%(bg?%@é@g@'{g 2
=1 12(1) PLEPy D 1

# ¢172421 ¢ 12 Qﬁm ’ ' 6// ? 11/?
Zg (%9 Z3 : <3 ?l’ ‘1’1@2‘1)3@4‘1)6@9‘1)12 Cg
Gy: 1 Fa203030, -1
¢2,15 él'lQ@%(I)gq)lQ 1
Zs@Zs:—1| $a0i0,0y0.06001) (s




120 APPENDIX A. TABLES

A.11. Unipotent characters for Gog

Some principal (-series

G Hz(Ga?,
-, <951.7 _C3a ng, _1.2)

Go HZIS (C3.’E3 —<3$2,33,
C?%xa_g 3/27 9T, _4313)

_C??a nga _nga C§$3/2, _C??xg

Non-principal 1-Harish-Chandra series

He,s (Z3) = ’HGW,Z(LCg:CQ, 20228, —1;2,-1)
HG’zs (G4) HZG (3737 7C§I‘ ) C&T ) *17 43 ‘T3a 7(3‘%4)
HG%( 3, 1 2) Mz, (x4a _C§x3a (3, —, C,?%v —(37)
HG% (G3 1, 2) HZG (554’ _C§$7 437 -z, nga _C3$3)
g Deg(y) Fr(v)
* ®1,0 1 1
®1,9 32D P15 P1s 1
# P35 120304 DY DY P12 P 1
* b31 %x<1>3<1>g<21>6<p’6<1>g,q>12<1>’1'8 1
?2,9 S5 0P, By DY D1 1
Gi%, 11| Soieiele,ofofeoly G
Zs:on2 | Sad 0,042,020, 2
b2.3 =52 20, D®YY By 1
Zy: .2 —T@ml%@”@@’ ‘oyoly v, 3
GEPy i1 | SRl B30y B,y Py Py Pl (3
®3,6 37203y P 1 P1g 1
5.8 745 Pk T YAk T I I 1
3.4 —43 22! 2@”2%@12@18 1
# ba 2«1)’ 2c1>4<1>”2<1>9<1>”§<1>18 1
GEPy 1 —(3 <3 22 PIP3D Dy, D15 G3
Zy:d.— | =Six 23 1 P2 P40, DY DD P1s 3
x 6.2 7;52@“2@4@' 20y 1s 1
Za:od-— §x2q> Dyl D4 D, DD D1 2
Gyt —G3 Sk S0 SL T ST €
* ¢8,3 123030, D3P, P1s
i P56 123030, D3P, P1g

7(3503 nga 7(313/27 z, 7<33327 4.37 7C§xa nga -4

7C3xa _13 ggxa

—Z, C§7 —Z

) 7C32x27 C3x3/2

2

b

)



A.11. UNIPOTENT CHARACTERS FOR Gag

v Deg(y)  Fr(v)

Gagli] 1307030, PPy, ixl/?

Gas[—1] 1301030, PPy, —iz!/?

% i 33 A DD DD By DYy Dy 1

# i S8 A DI DD By DYy D1 1

Zs:...1.1 V34D, DI, 2Dy D1 2

313 73%5/?31'4(1)%/@4@/63@9@12@18 1

Y5 =3VE3 AL, B DD, D 1

Z3 N _T\/j?’x4<1>1<1>§(1>4c1>9<1312<1>18 g

¢9,7 3_ﬁ$4¢g3®4¢%¢9¢12®18 1

¢9,5 3+17\é?3$4q)é3q)4¢)/6/¢’9¢)12¢)18 1

Gas[¢3] @534@?@2@4(1)9@12@18 2

Gy 7% 73+\/j3 4@2@2@//@/@9@1{5(1)18 1

Ga:—G —3— \/7 4(1)2(1)2(1)/ @’/(I)Q‘I)W(I)m 1

Gag[—(3] f T3P, PP, Py Dy -3

* ®6,5 % PPLP DY DgP12P1s 1

# or VS 50 B4 Dy D D10 P1 1

Zgl 2. _\gj3$5q)1‘b2q)4¢9@12®18 ??

* 8.6 7\5/4:7316‘1)3@/3/3@4@9@12@18 1
- 3

# ¢8,12 \/574731'6@%(1):/3 (I)4(I)9(b12®18 1

41 S 6 P3Py BLDFDY DD 1

47 =53 5P D3 By PEDY D12 D1s 1

¢2,15 éIEj‘I)%‘I)g(I)g@lQCDlS 1

8.0 220030, DLDY Dy Dy D1g 1

QS/&Q *%6(1)3(1)4@2@/ cbgq)ﬁlé/cblg 1

P63 i F 20D DL Py P PE PP 1o P1s 1

6,10 ‘”r 20D B4 By D DyDy P12 D15 1

" i e VoL TX X YT ST I 1

3,16 3+? 2503 DY Dy PP P12 P g 1

P8 3 25P3D, DYDY D oD 1

®9,10 3+F 2P0, D PPy P1oD1s 1

¢1,12 glﬁ‘b”g@ q)g (1)9@12‘1)18 1

¢1,24 7\54: 6(1){33(1)4@/63(1)9(1312@18 1

¢2,18 §x6¢g3¢4®63¢,9@12®18 1

®2,12 _\/53 6<I>/3‘1>4<I>”3‘I)9‘I>12‘I>18 1

Zy:d-+ | 33 6<I>1<I>2<I>”2<I>4<I>’ Dod P15 2

Zy:od-+ | =3 1( 601 By ®, P, DU 2 Dod15P1g 2

121



122 APPENDIX A. TABLES
gl Deg(v) Fr(v)
Zy:l.-— B TE Y ST 2
Zy: oA | 53000, 030, 0,0 By 1o P 2
Zy: 1 | 373050, 0304 DD, By By 2
Zs 1.1, 22250, D30, D, DY DY DL D 1s 2
Zs: 1.1 4 x6(1>1<1>5<1>”2(1>4<1>2<1>’ DYDYy D15 2
G4 01 6(132@3@9@12(1)18 -1
Gy (s 43 x6<1>2¢>3<1>6c1> Dyd1,0)y 1
G4:g§ *43 0PI PEID DL DD oD, —1
G %er@%@3@@(@4@%@%@;;@/1%@18 (s
:1;"102 G 520 D2 DD, B, DIDY DYDY P (3
Gi%, 1 —(s | a0 03030 B, By D1, P G
GIN, =3 | 200303040, 0 Do 1o B G3
G, -1 VS 62030 Dy Dy Py D12 D1 (s
G0, 1 SV3 0 D2 PIP, By BY oD 2P (s
Gag[—1] L3I, D De D Drs 1
G24[-1] —1 2SD3DLDY D, DD} Drg 1
G361G3] 3+ﬁ 6‘1’3‘1)2‘1”3‘I>4‘I’”2‘1>"‘I’12‘I)18 2
G36l¢3] *3+r 2O} 0, Y Dy DY DY D12D1s 2
G36[—C3] %3 6¢3¢2¢’§¢é®4¢g2%®’{é‘1”18 (3
2
G36[—C3] S L L R Rl L Y
GoslGs] | 21300030304 DY d1,P1s (s
G36(¢s] 7_32%/3mﬁq’?@%q’égqhq’gq’é@m‘l’ls (3
Gag[—C3] £ 15 DIDIPIPY Dy DB DY Plg  —Cs
G[—C3) 2O DIDIDIDY DD DB DY —Cy
Gaell] V310330, Py D12 1s 1
G36[1] F 20 D3D, DY DD P15 1
G341] gx%?)cb@’ Do®1oP s 1
Ga6[C5] =3 160303 03D, 3P 5
e (el Y303 D3D3D, DD, 5
Ga6l¢3) e T S C S ST R T I 2
93,15 %xufb?,‘be@g‘l’lz‘l)ls 1
# o L A JL X ML T S
s 3
% %’11 1 11(1)//2(1)4(1)/2‘1)9(1)””‘1)18 1
3,17 —== 11@%'2‘1)%2‘1’9‘1)12@18 1
’ _¢2
108,003 ) S PIBID, Dy DD s
Zs .11 211 Py Do YDy DDy DYY P1g 2




A.11. UNIPOTENT CHARACTERS FOR Gag

gl Deg(y) Fr(v)

3,13 %“z“<1>é2<1>’6’2<1>9<1>12<1>18 1

Zs .1 | 2D 0B 0y B Bedh D1s 2

G50y (3 %C?’an)%q’%‘h‘be)@fg‘bls €

£ Phie By 3 10 DDy B Dy 1

# ¢3,20 3+g7;3$16@§¢gq>9(1)'1'é¢'18 1

Z3 1. + _T\/jg$16¢)1(p2‘1)4(1)9(b18 32

% é —/-3 21, /Do D" 1
1,21 G L 4PgP12P7g

$2,24 121 PIPIDy g 1

G4 :—1 %11‘21@%(1)%(1)9 -1

Zs 1. T JT 2T ST T 2

# 133 V3021, 0B, P 1

123



124 APPENDIX A. TABLES

A.12. Unipotent characters for Gy

Some principal (-series

<5 i Hazg, (<59337 —(ga? ’Cllng C51'3/2a C151' C15 3p4/3 , Gsa® C?slﬂa (:’3-% *4525”3/27
(3w, =3, a3, —({3a?, (i, —Csa/3, (a3, —(i3a?, Cst —Cfs%wav, =G5,
(F52%, —Cis? C5$3/27 — (a3, (33, —a32, (g, —((B)

C5 . ,HZ30(C533 ,—C15JJ2 <15x5 - 5$3/2 ClléxQ —C15.Z‘4/3,€52J}3/2 —C3$2,C15.23, —1‘3/2,
<1251'7 —<175l‘2,<2 5/3 _C € <151‘ —C51'4/3 Cgl‘ C32x2vc54x3/2’ <11511‘2,<175JC, _<52'I3/27
C11§$5/3a*<15$ ? 415934/3a 31, —C2, (3w, —(i527)

CE? : HZso(Cgif ) ClS‘r ng —z3/2 C2 5/3, C7 4/3 <3 3/2 C11§$2»<15$ <57C15x7
—<’175$7C§$3/2,—<1 J’. Cl 5/3 _<4 4/37C15m —<15$2 .’173/2 _ng 7C1"7) _C3 3/2a<3xa
_C1753327C§335/3a _415374/376151’7 _45373/2a615$ C )

Non-principal 1-Harish-Chandra series
( )[ ]) HZ@( 5/27—<325'357<37—$5/27C327—<3935)
HG27 (12(5)[ ]) HZG( 5/2 C xS’ (3, 7.%5/2, Cg?, 7C3$5)
HG27(BQ) = HZe(x s T Sx 7C3» 557@3%, _CSxS)

v Deg(y) Fr(y)

* P10 1 1
* 5.1 | 25 a0, 0 b 0 By 010D Bl ) 1
¢s.1 ﬁ S AL 7 TR T S TR ALOE TR S
L(5)[1,2]: —¢3 ﬁ G DDy D, DR DYDY (P
L(5)[1,3]: —¢3 ﬁ S DI D, DI DDULDYY (P
By: (3 E VI3 D5 DY Dy DY 1

$6.1 0 0 Oy 1

# A SISO TAT IR TR VAT TN S R SRR T YR 1
5 —g <3x<1>'3<1> 10D D10 DY D) DY) 1

L(5)[1,2] : —C3 —VT =I5 9203030, D, BRDL D1 DL RY, (B
L(5)[1,3] : =3 —ﬁ V156 1 2 D3 PIDL D DEDY D1 DY BYY 2
By:—(s 3+F x<1>2<1>2<1>'<1>5q>”3<1>"§q>15<1>/" -1

6.2 3+r w D3P, BIDY 1o By DY B3 1

037[4:3] ‘/;90@3‘1’3‘1’4@5@10‘1’12‘1’15@30 3
G3.[¢3] YD G DD, D5 1012 P Pl 2

Garlch) T 0004030, 05 00000 Ch
Gar[(is] ‘/T I PFPID D5 DFP10 P12 Cis
G37[—¢3] “;mi’@%’@%%%@mfbm —(3




A.12. UNIPOTENT CHARACTERS FOR Ga7

gl Deg(y)  Fr(v)
271¢3] Y 103030, P52 P10 D30 G
* ®10,3 %?3@%@5‘1%@10‘1)15‘1’30 1
5.6 $304P5P19D12P15P30 1
P56 1230, 05D 10 P12P15P30 1
BQ 01 %J}Sq)%q)g(bg)q)loq)ls(bgo -1

T 45303
# b9,6 3T P3P 2P 5P30 1
370C3] | 22t PIDIDL By D50 Dy BIL DYDY (P

3 3

3:0¢3] | 32 DI DIRL By D5 DE 1o R IEBYy  (fal/?
$9,8 Lt P3P3D1,P15P30 1
CorlGo] | Lt I3, b is i 010 Goa®
Ga7[Co] 3%154‘1’?‘1’3‘1’%3‘1’4‘1’5 O DD DY Gow'/
* ®9,4 %x4<1>§<1>8<1>12<1>15<1>30 1
Gor[(]] | 32130304 0a 050 01 BIE YL RYY (Ja?/?
Gor[¢d] | 32103030 0, 0507 @10 PYOLRY)  (Hal/?
* b15,5 %965‘1’?3'3@5@%3‘1’10@/&'@15@30 1
# G157 %ﬂﬁ@g‘%@g?’@loq’%@m‘bzzo 1
G57[¢s] 7\/773 TIPIDED, PP P15P30 (3
* ¢8,6 20 6<D3@4(I)I @3@104:)12(1)15(1)30 1
®8,12 5+\[ 2OPFD, DY DFD 1 D125 P30 1
L(5)[1,2] : ‘£x6<1>2¢3<1>2(1>4‘1)3<1>10<1>12¢>30 3
L(5)[1,3]: 1 V516 23PID 4 DID 10 P12Pa0 2
# P 5— f 20 DD, DLDID1( P15 P P 1
Y 5+f 20 D3D, DL D3P 0P 5P Dy 1
L(5)[1,2]: -1 ﬁx%ﬁ@g@g@@g@m@u@go 3
(5)[1,3] : —1 V516 p23D2D 4 DID 19 P12Pa0 ¢2
G27[Z] 5— f 6®3@3¢4(I)5(I)10(I)12(I)15@30 il’l/z
G2.[i] 5+20f 6<1>3q>3q>4<1>5<1>10<1>12q>15<1>30 izl/?
Gz?[ng] 1S PFDIDID, D5 PED12 P15 (3522
G27[C2g] 5 6(133@2(133‘1)4@5‘1)%@12@15 <218$1/2
[ Z] 5— f 6@3@3(1)4@5(1)”0(1)12(1)15@30 7711’1/2
G27[ 1] 5+f 20 D3PED, D5 D (D10 D15DY,  —ix!/?
Gar[CZ)] gqu%%@@@m% ¢Tat/?
G27[C20] \1€$6¢%¢’%¢g®4¢’5‘1’6‘1’12¢’15 430951/2
* ?15,8 ?’_é;ﬁ358‘1933@5@?5/3@10(1’/1'5‘1)15@30 1
## $15,10 3+}F 8O3 DDy By P 15D 1
Gar[(3] F 3DIPED D5 P P15 P30 2

125



126
A
PPENDIX A. TA
* gl BLES
G2 ¢979
27(63]
a3 ¢ 1 =
27[1} P CRTRYE T.933 og
’ ¢ =Gy 10504°0 32 PLEP10 ) Fr0)
9,11 3 L O3D3 (DD 15P30
G27[<g} 1 2¢g3¢4®5¢?3§10@¥é®/{g¢/“ 1
G371¢5] %l’gq)g 1958@3 10@3’5@1%@?;2 C3a2/3
=(3 1@3(1)’ 3 3 3@3@ 30 <2I1/3
) 5 P53 @ §P12® 9
9,1 9 3 12
7 3 BN (I>113q)3q)//3 4(1)5@(3’3(1) , 15P30
C2 1 " 0 2
* 21l _§s$9¢?®3@/3 :l”xg‘bgg?)cpu@{éq)%’ ngl/g
10 =G5 2.9 2%3 [0} . 6 12® 90T /3
/712 3 € (I)?(I)3Q)//3 4@5@%/3(1) , 15(D30
515 2-3 @4@5(1)63@10‘1)1’5@’1%/@,,, , 1
B 95,15 1212920 (1;2(1)/1/5@’1’3@32 <g$2/3
* 2: 1 %xu@ﬁp ‘:}) 6‘@10@15@? ngl/‘s
1,.12 5P1oP 0
LY B A i !
,3): G ) 16<I>/3 7P} ® 505019015® 1
I, (5)[1 3 —\/_— Dy @//(I)”3 0 P12PY P 5®P30
’2]4-32 151 Cs 16¢2 @//0(b12(b}5 %85 (bgo(b(,?) —1
BZZCQ —V—15¢s .16 1q)%(1)§(1>/q) 5(1)15)@/ (I)(g) 1
3 T 25202 LD, DY D ,/0 .
# P6,19 3+F 162 29,5, D2/ 1207 ®Y!
1" 3+F <I)2(I,2(I)/ 6 G(I)lzq)’“/ ; 2
¢3720 7\/TC3 16 12 16(1)2@/3 Dy (I)”3 ”’(1)15 (133’6 2
/
= (I)/'3 (I)2 " 15 " 5
L(5)[1,3] 320 % 1%//3@ LD (I;I’ 100l cpmlq)so 1
12(5)[1 G Nt (0] ‘I)”qu /10 12@’1/5(1)(5)(1)// 30 ]
,2] : C 17 16 (I)l/O(I) @ 15 30©(5)
B 3 i (I)Qq)zq)zqw 12 (I)§6)(I)/ 0 1
2163 15 2160203 434@2(1),@5 50Ps0 )
¢6717 3— \/— (I)Q(I)//CI) (1)2 1261)3/:5(1),/// 1
1 16 4 cI)/ 30
G2 5 2 D242 1o d 2
27[C3} \/7 1 @”q) ,3 12 5(1)//// 5
G 6p2 //3 5Pg" 0Ty 30 3
27[(3} _\/T q) (I>2(I), CI)15(I)//// 5
G 21693 010Dy _
G27[415} \/T 16 @3@4(1)5@ @12(1)/1%(1)30 1
3 1
27[¢33] *\/T DIDID, P 0P 12D D 1
G27[ 15 16(1)3 3 ‘bloq)l P 30 C
} —/—15 l(I>2(I)2q> 2 10'1)3 3
G 15 163 50, P5D5P 0 ¢
- 2l —v=3 10523 ® g10¢12 1?
®1,45 I 216P3P3 52D P 1
/=3 P3P0 12
16 3 1 14
A S 5P10P i5
1 2q’4<brq>2q)0 15 ¢
5¥6 10@30 3
1‘45 CB
1




A.13. UNIPOTENT CHARACTERS FOR G3,3,3 127

A.13. Unipotent characters for G333

Some principal (-series

—1: Hyz (=23, —(322, (3w, —1, — (22, —(32?)

gl Deg(v) Fr(y) Symbol
x 1.+ 3Py D¢ 1 (14)
x  1-C3 3Py B¢ 1 (1E3)
*  1-¢3 3Py Pg 1 (1E3?%)
R R R L 1 (01,12,02)
#0111 | B34 gy 1 (01,02,12)
Gsssl3l | =5 a'eie, G (012,012,)
« 111 29 1 (012,012,123)
s 21| Y5000 1 (0,2,1)
# 12| 25000t 1 (0,1,2)
G3.3.3[Cs) V3 i, s (012,,)
« .21 3P, g 1 (01,01,13)
x .3 1 1 (0,0,3)

We used partition tuples for the principal series. The partition with repeated parts
1.1.1 gives rise to 3 characters denoted by 1.+, 1.(3 and 1.¢3. The cuspidals are labeled

by Fr.



128 APPENDIX A. TABLES

A.14. Unipotent characters for G443

Some principal (-series

C3: Hz,(Csa® 7C37C31’ )
C HZg(Csx , 8=T ,CSCU CS»T 7<8$ <8aC8x C )

) HG4,1,2 — )(127_“7»_1,23?7 —x,—1)

Non-principal 1-Harish-Chandra series
HG4,4,3 (BQ) = HZ4 (1'2, ixQ, -1, _7;)

ol Deg(y) Fr(v) Symbol
111 T3Pz dg 1 (0,1,1,1)
PR TR = R 1 (01,01,12,02)

.11 $2° P3Py 1 (01,02,01,12)

# 111 | Hla5e,0 %0l 1 (01,01,02,12)
By —i Z+1x5<1>2<1>3(1>’ -1 (012,012,0,1)
Ga.43[—1] St 0P, Py —i (012,01,012,)
By:—1 %x%%@g@g -1 (012,012,1,0)
x ..111 xt? 1 (012,012,012,123)
N A 1 (0,0,2,1)
1.2 12P3Pg 1 (0,1,0,2)

# 12| THlrd,007 0 1 (0,0,1,2)
Byii| “lad?dsdy -1 (01,02,,)
G431 Lad3D, Py i (012,,0,)
B :1 L S LA -1 (02,01,,)
.21 ridg 1 (01,01,01,13)
% .3 1 1 (0,0,0,3)

We used partition tuples for the principal series. The cuspidals are labeled by Fr,
and the characters 1-Harish-Chandra induced from By by the corresponding labels.



A.15. UNIPOTENT CHARACTERS FOR Gao 129
A.15. Unipotent characters for Gag
Some principal (—series

Cé : HZ20(C§‘T43<20I5 /2 7(132, 2161'2, 5$ ,<20$ §5$ ,420’1,’ 7C20x C5LL‘
C20$5/27C5x CQOx C 20x3/2,C5,C20x _C 7421(%553)

. 17,.2 17,.3/2 2 2
C5 : HZzo(CE;CU ) 2537 - 597 7C20$ ) 555 G20 a3/ » 555 a§270375/ §5$ ) 2033 _C

2 1 2 2 ~17,5/2
C270x ,€5,C207.I‘3 —T aC 3/ 7( aC 5/ _C5-T aC270x)

. 2 2,2 2 2
G ¢ HZ20(<553 aCQOx —(sa? 7C2ox C5a<20333/ —G5X7, 2017 %, (s, CQOZE - gl"

<2181L’3, 4-555 ) CQOIa 7<5

Hoo (Ga,a,3[1])

7420 xS/Z’ C5.T ,§20(£ ) —x a<218 5/2)

Non—principal 1-Harish-Chandra series
Hng(BQ) = HG4,1,2( 2 Zx =1, =i z? 1)
:HZ4( 5, 0 7_17_25(;)

HG29 (G4,4,3[_7;]) = 7-[Z4 (x67 i$57 -1, _i‘rS)
v Deg(y)  Fr(v)
* ®1,0 1 1
% ban 207 DL 010D, Py 1
P44 %Ji‘lﬁ‘l’uqbo 1
= Pa,3 Ly 3P, DY 1o Do PY) 1
By : 2. —il 3Py B By DY B, DY -1
G4,4,3[i} 01 %m@i’@g@g@ﬂ%@m )
By : 2. H1 0T B3P, 05 Df DY, Y -1
* ®10,2 22 P5 Py P10P2o 1
Ga20[C3] 12301 D5 0305 D D510 (F2t/?
* 16,3 %953‘1’3‘1’8@12@20 1
G29[Cs) 123010 d3 D5 PP P10 (sw'/?
d16,5 %$3‘1>3‘1>8‘1>12‘1>20 1
* ¢5.4 221 3056 Ps P10P20 1
®5,8 128 D5 P P10 P12P20 1
®10,6 %584@421‘1’5‘1’10(1)12@20 1
By:1.1.. 12797 5D3 D5 P10Pa0 -1
* P54 21 D3D5P6P10P12Pop 1
* ?20,5 #15(1)%(1)11/2@5@6@/8/@10@’12@20 1
?20,6 %I5Q)i¢5@10¢12@20 1
# $20,7 iH 5¢§q’ﬁ2¢5¢6¢é¢10¢"{2¢20 1
By:..2 1+1 2P D3B3 DD D1P] P -1
Gaasl—i]: 1 S’ PP P35 P6P10Pa0 —i
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A. TABLES
Y
B .
- 2%..2. —H o7 ;
Gaoll ichpf 5P D10 PP : -
} 20 2®3® g
1111 L ) : 5¢6(I) (I) _1
6,10 -1 207 P10 %62 o
1 %‘TGCD o/t oo )
" B 3P P5PsdP o
g,lo 20 L @3‘1’24'@5@ @8(I>10(I)12<I)% |
P24,9 éx6<1>3<1>5<1>6 @8‘1)10@12(1)%/ |
By :.1..1 %xﬁqﬂq) g ot 1
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A.16. U
. UNIPO
TENT CHARACTERS FO
R Gs2

5 Y
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6 g
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e C*B 15 105D5" PsPyP 1o P 15P18 P24 D3
Z3: ¢o8 ;&21521¢2¢3 2020,0/°3 (;/ 10<I>12<I>15.1>18q)24¢g§ l
Zs + ¢9,10 & 1020 0F 5 P @8 9q>10¢12<1>15q)1 oD 3
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- P6,11 43 15 CI) 39 72 0%12 3
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It 12 E
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Gy 1 3 1542 9 10(1)12(1)//// 24¥30 _
VA 2,5 gS 1050, B5 D6 Dy 15/ ®15P18P2s DY 1
3® Z3: .. 1.1 x15q>2q>3q> 6D PP D12V D , 4330 -1
VA 15 9 1P DD/ P 1P 5Pl oD
3®2Zs:...1.1 ( DIDPLP2ID5 D2 @6 8‘39@12@%@15@? 24P30 1
Z3®Q Z3:...1.1 53 x15<1>2¢>2q> ©2q> q)ﬁ [ B By D1 D12 DY (1)18$24<I)30 1
o _C 1 5P5P 15 P1gP2a®
Zs® Z3: 1.1 Sx 5q>2¢’3¢’3¢’2¢>6¢>6q>8¢) 9 P10P12PV5 18P " 3
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A.17. UNIPOTENT CHARACTERS FOR G3s

A.17. Unipotent characters for G33

G5 sz(C59597*C5$9/2,C5955,*C55837C5I6 C59€4,C5939 /2
Cg : HZm(nggv_Cngg)va_ngg/z 43 Csx ) 5‘r

CS : HZIS(C2 5 8553 €§$5/2 ngQ’ €9x ) 9$
—CQ 5/2, _CgaCsﬂ? _ng ) v_Cg )

Go : HZIS(CQz ,—<9£E4, g 3,—(3562,(3175/2,— g:r’g

74&;1'33 ngza 7<§1

Some principal (-series

.TS/Q, Célxsa 7(9%2, nga 7(51)

CG : HGze(_C?)xa _1; C§x27 <37 —; C{’?va C3a —ZL’)

(3 HG26 (C§377

_17 <3$2,SE7 <327 <3.’L'2,.'L'7 C??)

Non-principal 1-Harish-Chandra series

Cw CB 9/2

) C9$27

Haos (G3,3,3[G)) = Ha, (22,3, (35 2°, (3, (3)
HGSS (G373,3[<32]) = HG4 (1’3, 43137 <327 I3a <3I37 C:%)
Mgy (D4) =Hz, (33‘5, —C§$4, Gz, —1, C?%xv _CSJJA)
2l Deg(y) Fr(v)
* $1,0 1 1
* ¢5,1 3+ 6 117‘1) @9@10‘1‘”’ 1
# ¢5,3 3— :17‘1) ‘I)Q‘I)lO‘I'HH / 1
G3,3,3[¢3] : 9100 3 $¢’3¢’2¢’4¢a¢’10 (3
* ¢15,2 x2(1>5(1>9q)10¢)18 1
* ¢30,3 %1‘3@3@5@9@12(1)18 1
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D244 1279505 Po P10P 18 1
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# ¢30,6 7<3 4(13”34)4‘1)5(1)9‘1)10@12‘1)18 1
G333[C3]: 14 Lt T DD D5 DY P1oP12P g 3
Dy:—(3 —3+r T DI DIDL D DDy D a DYy —1
G3,33[C3] : 2,3 43‘764‘1’3‘1’3‘1’4‘1’5‘1) P10P12P1g 3
Glaa[ 3] YBT3 PP 0e D10 —CF
10,8 S D35 0 Do 10 P12l 1
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A.17. UNIPOTENT CHARACTERS FOR G3s

v Deg(y) Fr(v)

Dy:—1 128D P53D5PoP1s -1

* P15,23 283 D5D9P10P1g 1
* ?5,28 %UCQS‘I’.&I’&’@w@%’ 18 1
# P30 | EELE a5 10D 5D 1
G333[G3): d1s =383 03 0,5 P10 G
* 1,45 Z1° 1
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142 APPENDIX A. TABLES

A.18. Unipotent characters for Gsy

Some principal (-series
C? : HZ42(<$ C21$7/2 <4 10/3371'3 2111$3 C§1x47 $$8/377<2111x5/27<§1
—C7IE3, 21111'2 _Célx 7<7 ’ <2111x57C§1‘r5 /2 71.3,411 10/3 Cg 2,C$.’E3, C2111£L'4

Gha*l*,—Ghat Gifa™l?, G 5%x37<§1w4 103, (Hab/2, ~ (a2, B0,

C21113327<211’ C C2111$8/37_C§1 5/27@7— T, Cle 4733 ) 2111x4 —C§1x5)

C? : HZ42 (C71' —C§1$37C21$7/2;—C$x35<§1 10/3,—C21$ ,<7SU 7—<281[L‘5/2,C21$37

74 ) <21$ 4'2150 C 8/37 7(2815627 C21$5/2, 74’?3:37 4281:7]7/23 7(213747 C?Zlo/sa 7C§1x5
CZlm ) —<7£L' ,4-2155 ) _<21x7/27 C$$4, _C281£r7 CleS/g _x?) CS .’E5/2, _4213537 C’?v _C2811.47
C21$10/3, —<7.'IJ3, C§1x27 —<21$5/2, CS 3 —C§1$7/2 CQI‘T C ﬂC281$8/3’ _C21:E2)

G Haz,, (G120 =5 xt, (ia?, = C21338/3 —Gora? C43310/37—C251$5/2 Gt
—333;<51937/2 - 21?535744 %, (o, 21175/2 —(r?, (327, <21177/27C4 8/3 —6)1333»

a1, i Gt it G Cha® i, i, (el it G, G
G013, —GH By 73, G0, Gt~ Gy, G, — 3, G, —Chb)
C7 : /HZ42(<7$67 C2117.’E57<2110$4 —C7.T3,<21175(32 _CQI:E C?a <2117x5/2acl 8/3 CQ 3
(HTa®, ~C100, Grat®/3, ~CHa /2, (100572, (0, (YT, —Ci0d, Gra?, — i, R0,
ZGta®, G0, 0t Gra®, —(Ha?, 0O/, —(Ead, (a2, - c%?zf’,cw: e,
<21?£L'2 C ,421£B7/2,7<21? 5/23C7x8/3a C%Z$4, 2110$3 7$33C2117 10/3774'21?‘%7/2)
Non- principal 1-Harish-Chandra series
HG34(G333[<3]) HG%( 1 x 3C3a<3a 7(374:%)
HG34(G333[C3]) HG%( 1 x ,ng 7<37 ,C3$3,C32)
HG34( ) HG6,1,2( C ,ng 1 Cdx —C3£L'4 .%'47—1)
HG34(G33M) HZG( CB?C3$ —a? ’ 31' 43)
HG34(G33[ ZD HZG( ) (3,(3.13 ) $27 7_C3)
HG34 (G33[ 3]) = HZG (3?3, - §$87<3x77 —1,(%1’77 _CSxS)
HG34 (G33[ 3‘?]) - HZG (xS’ 74??‘%7437 7£85, C{)?a 743‘%)
Deg(v) Fr(v)

* 1,0 1 1
* b6.1 33 20l P Dy S D Y BYL DYy Dos DY) DY, 1
# ¢6,5 3— \/7 @//3¢/3¢8¢////q)///q)// @244){3/6/@22 1
G3,3,3[¢3] = 91,0 \/7 P3P0, 57 P P10 P14P 24 (3
* ¢21’2 3+ -3 2<I>”3<D’3<D7<I>””<I>14<I> ’<I>21<I>’ q>g(/)/q>42 1
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APPENDIX B

ERRATA FOR [BMMO99].

— Proof of 1.17: this forgets the case of G(2e,e,2) with 3 classes of hyperplanes.
This case is still open.

— Page 184, generalized sign: let Ag be the eigenvalue of ¢ on the discriminant
A. Then change the definition of eg to eg = (—1)"¢y ... (;Af where r = dimV.

Most of the subsequent errata come from this, and are superceded by results
in the current paper, see in particular 1.3.1.

— 3 lines below: {(1,...,¢ -} is the spectrum of we¢ (in its action on V'), and
Ag = 1. In particular we have then eg = (—1)"dety (w¢). In general, if we is
(-regular then the spectrum of w¢ is {¢;¢~%11} so dety (wo) = (i ... N
and eg = (—1)"¢ " Ndety (we).

— Second line of 3.3: “Moreover, if there exists v¢p € W such that v¢ admits a

fixed point in V' — {Jyc 4 H, then ey = egdety (vw™1)*.”

3.5 |G| = gz [[;(1 — ¢Fa¥) = 2V AL T, (2% — ).

— 3.6 (i) |G| = 2NV AL 4 @4,

3.6 (il): |G|(1/z) = Akega™ CNTN"+1|G|(z)*.

3.7 (1s.2): ¢* is the product of (1,...,1,¢) acting on V x ... x V by the

a-cycle which permutes cyclically the factors V of V(®). The ¢; for G(® are

(¢3¢ "m0, am1im1.r and Ageoy = Ag 50 |G| (z) = |G|(z?).

— 3.8: The ¢; for G¢ are ¢%¢; and Age = Ag¢¥ N and thus we get |G¢|(z) =
¢IGIC ).

- 4.9: Deg(R§¢) = trrg(we)*.

— 4.25, second equality: Deg(adety-) = Ag(—1)"ekazN Degg(a*)(1/z)*.

— 4.26, first equality: Deg(det},) = (—I)TAGsaxNv.

— bottom of page 198: suppress the first |G|Sg(c).

— last equality in proof of 5.3: suppress TG.
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— 5.4: In particular we have:
N© = g 2ND (mod @),
A((;,E(}‘;xNV(G) = ALE]}ixNV(H“) (mod @),

AGQ;N(G)JFNV(G) = A]LJ?N(LHNV(L) (mod @)

EGT

— 6.1(b): the polynomial in ¢

j=ec—1

H (t _ Cgcync,ﬂll(Kﬂ)

=0



[Ben76]

[Bes97]

[Bes01]

[Bes06]

[BKO03]

[BM92]

[BM93]

[BM96]

[BM97]

[BMM93)]

[BMMO9]

BIBLIOGRAPHY

M. BENARD — “Schur indices and splitting fields of the unitary reflection
groups”, J. Algebra 38 (1976), p. 318-342.

D. BEessis — “Sur le corps de définition d’un groupe de réflexions complexe”,
Comm. in Algebra 25 (1997), p. 2703-2716.

, “Zariski theorems and diagrams for braid groups”, Invent. Math.
145 (2001), p. 487-507.

,  “Finite complex reflection arrangements are K(m,1)”,
arXiv:0610777, 2006.

M. BrROUE & S. KiM — “Familles de caractéres des algeébres de Hecke
cyclotomiques”, Adv. in Math. 172 (2003), p. 53-136.

M. BROUE & G. MALLE — “Théorémes de Sylow génériques pour les
groupes réductifs sur les corps finis”, Mathematische Annalen 292 (1992),
p. 241-262.

—, “Zyklotomische Heckealgebren”, Astérisque 212 (1993), p. 119—
189.

M. BROUE & J. MICHEL — “Sur certains éléments réguliers des groupes
de Weyl et les variétés de Deligne-Lusztig associées”, in Finite Reductive
Groups (M. Cabanes, ed.), Progress in Mathematics, 141, Birkh&user, 1996,
p. 73-139.

K. BREMKE & G. MALLE — “Reduced words and a length function for
G(e,1,n)”, Indag. Mathem. 8 (1997), p. 453-469.

M. BrROUE, G. MALLE & J. MICHEL — “Generic blocks of finite reductive
groups”, Astérisque 212 (1993), p. 7-92.

__, “Toward Spetses I”, Transformation groups 4 (1999), p. 157-218.



154

BIBLIOGRAPHY

[BMR98] M. BroOUE, G. MALLE & R. ROUQUIER — “Complex reflection groups,

[Bou68]

[BROG]

[Bro90]

[Bro01]

[Brol0]

[BS72]

[Chl08]

[Chl09)]

[Del72]

[Del77]

[Del97]

[DL76]

[DMS8S5]

[DMO6]

[DM13]

braid groups, Hecke algebras”, J. Reine Angew. Mathematik 500 (1998),
p. 127-190.

N. BOURBAKI — Groupes et algébres de Lie, chapitres IV, V, VI, Hermann,
Paris, 1968.

C. BONNAFE & R. ROUQUIER — “On the irreducibility of Deligne-Lusztig
varieties”, CRAS 343 (2006), p. 37-39.

M. BROUE — “Isométries parfaites, types de blocs, catégories dérivées”,
Astérisque 181-182 (1990), p. 61-92.

, “Reflection groups, braid groups, Hecke algebras, finite reductive
groups”, in Current Developments in Mathematics, 2000 (H. U. B. Mazur,
W. Schmidt, S. T. Yau), M. I. T. J. de Jong, D. Jerison & G. Lusztig),
eds.), International Press, Boston, 2001, p. 1-107.

M. BROUE — Introduction to complex reflection groups and their braid
groups, LNM, vol. 1988, Springer Verlag, 2010.

E. BRIESKORN & K. SAITO — “Artin-Gruppen und Coxeter-Gruppen”,
Invent. Math. 17 (1972), p. 245-271.

M. CHLOUVERAKI — “Degree and valuation of the Schur elements of cy-
clotomic Hecke algebras”, J. Algebra 320 (2008), p. 3935-3949.

, Blocks and families for cyclotomic Hecke algebras, LNM, vol. 1981,
Springer Verlag, 2009.

P. DELIGNE — “Les immeubles des groupes de tresses généralisés”, Invent.
Math. 17 (1972), p. 273-302.

, “Dualité, cohomologie étale (SGA 43)”, LNM, vol. 569, p. 154—
167, LNM, Springer Verlag, 1977.

, “Action du groupe des tresses sur une catégorie”, Invent. Math.
128 (1997), p. 159-175.

P. DELIGNE & G. LuszTiG — “Representations of reductive groups over
finite fields”, Ann. of Math. 103 (1976), p. 103—-161.

F. DIGNE & J. MICHEL — Fonctions L des variétés de Deligne-Lusztig et
descente de Shintani, vol. 20, Mémoires de la S. M. F., no. 113, SMF, 1985.

, “Endomorphisms of Deligne-Lusztig varieties”, Nagoya Mathemat-
ical Journal 183 (2006), p. 35-103.

,  “Parabolic Deligne-Lusztig varieties”, Arxiv: 1110.4863
[math.GR] to appear in Advances in math., 2013.



BIBLIOGRAPHY 155

[DMM11] F. DiGNE, I. MARIN & J. MICHEL — “The center of pure complex braid

[DMRO?7]

[Gec93]

[Gec05]

[GIMO0]

[Lus76]

[Lus79]

[Lus82]

[Lus93]

[Lus94]

[Mal94]

[Mal95]

[Mal9g]
[Mal99)]

[Mal00]

[Mal06]

[MM10]

groups”, J. Algebra 347 (2011), p. 206-213.

F. DiGNE, J. MicHEL & R. ROUQUIER — “Cohomologie des variétés de
Deligne-Lusztig”, Advances in math. 209 (2007), p. 749-822.

M. GECK — “Beitrige zur Darstellungstheorie von Iwahori—-Hecke—
Algebren”, Habilitationsschrift, RWTH Aachen, 1993.

, “The Schur indices of the cuspidal unipotent characters of the
Chevalley groups E7(q)”, Osaka J. Math. 42 (2005), p. 201-215.

M. GEeck, L. Iancu & G. MALLE — “Weights of Markov traces and generic
degrees”, Indag. Mathem. 11 (2000), p. 379-397.

G. LuszTia — “Coxeter orbits and eigenvalues of Frobenius”, Invent. Math.
38 (1976), p. 101-159.

, “A class of irreducible representations of a Weyl group”, Indag.
Math. 41 (1979), p. 323-335.

, “A class of irreducible representations of a Weyl group II”, Proc.
Ned. Acad. 85 (1982), p. 219-2269.

, “Coxeter groups and unipotent representations”, Astérisque 212
(1993), p. 191-203.

, “Exotic Fourier transform”, Duke J. Math. 73 (1994), p. 243-248.

G. MALLE — “Appendix: An exotic Fourier transform for H,”, Duke J.
Math 73 (1994), p. 243-248.

, “Unipotente Grade imprimitiver komplexer Spiegelungsgruppen”,
J. Algebra 177 (1995), p. 768-826.

, “Spetses”, Doc. Math. ICM II (1998), p. 87-96.

, “On the rationality and fake degrees of characters of cyclotomic
algebras”, J. Math. Sci. Univ. Tokyo 6 (1999), p. 647-677.

, “On the generic degrees of cyclotomic algebras”, Represent. The-
ory 4 (2000), p. 342-369.

, “Splitting fields for extended complex reflection groups and Hecke
algebras”, Transform. Groups 11 (2006), p. 195-216.

G. MALLE & J. MICHEL — “Constructing representations of Hecke algebras
for complex reflection groups”, London mathematical society journal of
computation and mathematics 13 (2010), p. 426-450.



156 BIBLIOGRAPHY

[MRO3] G. MALLE & R. ROUQUIER — “Familles de caractéres des groupes de
réflexion complexes”, Represent. Theory 7 (2003), p. 610-640.

[Rou99] R. ROUQUIER — “Familles et blocs d’algebres de Hecke”, C. R. Acad. Sci-
ences 329 (1999), p. 1037-1042.

[Spr74] T. A. SPRINGER — “Regular elements of finite reflection groups”, Invent.
Math. 25 (1974), p. 159-198.

[Ste68] R. STEINBERG — Endomorphisms of linear algebraic groups, Memoirs of
the AMS, vol. 80, AMS, 1968.



<7 >G’ 15

1€, 16

A, 9

Abelian defect group conjectures, 50
a(w@)w,a/dv 30

Ay, 40

ay, 40

almost character, 15
AW), 9

A(Wr), 58

A(we), 57

By, 28

BW(WQOL 44
BW(wlp)v 32

braid reflection, 28
By, 44

CFy(G), 15
CFu(G,0), 15
ch$,, 15

compact support type, 62
cyclotomic specialization, 38
Oy, 70

Oyne, 70

Ag, 14

oG, 12
Deg(x) (=), 61
det{,, 10
det}, ¥, 11
detg, 14
detyl, 14
det”, 10

—~ (W
det Y 1

Ay, 11

INDEX

discriminant, 11
Discyy, 11
distinguished reflection, 9
e.P, 65

Eg(9), 15

e, 9

er, 59

Ennola, 65

Ennola as Galois, 72
ew, 10

EWr (wgo), 59

ew (wy), 57

fake degree, 19
Fegg, 18

fr(x), 75

Frobenius eigenvalue, 74
P‘r(p’y,a/d)(X), 75

G, 12

Gr, 58

generic degree, 61
|Gel, 24

|Gnel, 23

graded regular character, 18
grchar(g; SVW), 17
Hiy (we), 68
H(WG(Lv )‘))7 2
HW("UV’)’ 60
Indfg, 16
Irr(H(W)), 34

Jw, 10

Ty, 11

K, 9

Kwer 17

lir, 29



158

Ly, 12

mr, 63

mr g, 60

mg, 9

©®, 9

K(K), 9

Ky, 9

myy, 34

NP, 10

noncompact support type, 61
Nzt 10

Ny, 67

wy (), 67

Wy, 35

parabolic subalgebra, 33
parabolic subgroups, 10
Pw, 28

Py (wyp), 32
P-cyclotomic Hecke algebra, 38
Pg(x), 17

Pr(t,z), 60

T, 29

W, 29

Traq,a/d’ 30

Pl 2), 63

plmCl(t z), 63
Poincaré duality, 47
Poincaré polynomial, 17
P-reflection coset, 25

?, 12

Qg, 13

QW7 12

reflection coset, 12
Resfa, 16

RE,3

R¥, 1

Rouquier block, 39
Rouquier ring, 39

G
Ré, 15
RS, 15

o-bad prime ideal, 39
o-bad prime number, 39
(o, '), 15

INDEX

Sy, 35

Schur element, 35

Sg(a), 19

oy, 66

spetsial ®-cyclotomic Hecke algebra for W at
we , 60

spetsial at ®, 79

spetsial at we, 79

SV, 10

S— SV, 35

SVW .10

Gw, 33

Sylow ®-subcosets, 25

T, 33

Twe, 16

o) 67

trgwer, 18

Uch(G), 83

Un(G), 1

Uch®(G), 83

Un(G, (L, N)), 1

Uch(Gnc), 83

Vreg’ 9

V(wyp), 31

V(wep), 57

W, 44

well-generated, 34

Wa (L, A), 2

W, 9

Wy, 10

[w@]'y,a/df 30

W(we), 31

W (wy), 57

Xo, 61

£, 73

£v, 33

ch7 69

Xv=X> 67

X, 44

Zk, 57

Zw, 12

z.x), 73

Cn» 9



