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The Largest Irreducible Representations of Simple Groups
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Abstract

Answering a question of I. M. Isaacs, we show that the largest degree of irreducible complex
representations of any finite non-abelian simple group can be bounded in terms of the smaller
degrees. We also study the asymptotic behavior of this largest degree for finite groups of Lie
type. Moreover, we show that for groups of Lie type, the Steinberg character has largest degree
among all unipotent characters.

1. Introduction

For a finite group G, let b(G) denote the largest degree of any irreducible complex
representation of G. Certainly, b(G)2 ≤ |G|, and this trivial bound is best possible in the
following sense. One can write |G| = b(G)(b(G) + e) for some non-negative integer e. Then
e = 0 if and only if |G| = 1. Y. Berkovich showed that e = 1 precisely when |G| = 2 or G is
a 2-transitive Frobenius group, cf. [2, Thm. 7]. In particular, there is no upper bound on |G|
when e = 1. On the other hand, it turns out that |G| can be bounded in terms of e if e > 1.
Indeed, N. Snyder showed in [25] that then |G| ≤ ((2e)!)2.

One can ask whether the largest degree b(G) can be bounded in terms of the remaining
degrees of G. More precisely, can one bound

ε(G) :=

∑
χ∈Irr(G), χ(1)<b(G) χ(1)2

b(G)2

away from 0 for all non-abelian finite groups G? The aforementioned result of Berkovich
immediately implies a negative answer to this question for general groups. M. Isaacs raised
the question whether there exists a universal constant ε > 0 such that ε(S) ≥ ε for all simple
groups S. Assuming an affirmative answer to this question, he has improved Snyder’s bound
to the polynomial bound |G| ≤ Be6 (for some universal constant B and for all finite groups G
with e > 1), cf. [12].

In this paper we answer Isaacs’ question in the affirmative:

Theorem 1.1. There exists a universal constant ε > 0 such that ε(S) ≥ ε for all finite
non-abelian simple groups S.

One can give an explicit value for ε in Theorem 1.1, say ε ≥ 2/(120, 000!), (moreover, ε(S) >
1/209 for all but finitely many finite non-abelian simple groups S), cf. Corollary 4.9. This is
certainly very far from best possible, and it comes from the proof of Theorem 2.1. Note that,
for alternating groups S = An only asymptotic formulae are known for b(S), see [28] and [15].
It would be interesting to improve on this bound for ε. We do not know of any non-abelian
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simple group S with ε(S) < 1 (in fact, ε(S) > 1 for the majority of simple classical groups, and
for all simple exceptional groups of Lie type as well as sporadic simple groups, see Theorem 4.7
and Proposition 4.3). As pointed out by Isaacs in [12], if ε(S) ≥ 1 for all non-abelian simple
groups S, then his polynomial bound Be6 can be improved to |G| ≤ e6 + e4.

Lusztig’s classification of irreducible characters of finite groups of Lie type provides us with
a way to find b(S) for any given finite simple Lie-type group S in principle. In particular, b(S)
is known if S is defined over a field of large enough cardinality (in comparison to the rank), cf.
Corollary 4.6. But because of the delicate combinatorics involved in the classification, the right
asymptotic for b(S) for simple classical groups over small fields Fq has not been determined.
In fact, even the question whether the Steinberg character of S has largest degree among the
unipotent characters of S has not been answered in the literature. Our second main result
answers this question in the affirmative:

Theorem 1.2. Let G be a simple algebraic group in characteristic p, F : G → G a Steinberg
endomorphism, and G = GF be the corresponding finite group of Lie type. Then the degree of
the Steinberg character of G is strictly larger than the degree of any other unipotent character.

The next result yields a lower and upper bound for b(S) in the case of finite groups of Lie
type:

Theorem 1.3. For any 1 > ε > 0, there are some (explicit) constants A,B > 0 depending
on ε such that, for any simple algebraic group G in characteristic p of rank n and any Steinberg
endomorphism F : G → G, the largest degree b(G) of the corresponding finite group G := GF

over Fq satisfies the following inequalities:

A(logq n)(1−ε)/γ <
b(G)
|G|p

< B(1 + logq n)2.54/γ

if G is classical, and

1 ≤ b(G)
|G|p

< B

if G is an exceptional group of Lie type. Here, γ = 1 if G is untwisted of type A, and γ = 2
otherwise.

In particular, if we fix q and let the rank n grow, then the ratio b(G)/|G|p also grows
unbounded – a fact we find rather surprising (note that |G|p is the degree of the Steinberg
character of G). One can view Theorem 1.3 as a Lie-type analogue of the results of [28] and
[15]. Even more explicit lower and upper bounds for b(G) are proved in §5 for finite classical
groups G, cf. Theorems 5.1, 5.2, and 5.3.

Certainly, any upper bound for b(G) also holds for the largest degree b`(G) of the `-modular
irreducible representations of G. Here is a lower bound for b`(G):

Theorem 1.4. There exists an (explicit) constant C > 0 such that, for any simple algebraic
group G in characteristic p, any Steinberg endomorphism F : G → G, and any prime `, the
largest degree b`(G) of `-modular irreducible representations of G := GF satisfies the inequality
b`(G)/|G|p ≥ C.
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The paper is organized as follows. In Section 2 we prove Theorem 1.1 for S an alternating
group. In Section 3 we prove various comparison results between unipotent character degrees,
which may be of independent interest. We then prove Theorem 1.1 for groups of Lie type in
Section 4. In the final Section 5 we complete the proof of Theorem 1.3 and give even better
upper and lower bounds for classical groups of Lie type, as well as the proof of Theorem 1.4.

Acknowledgements. The authors are grateful to Marty Isaacs for suggesting this problem
to them, and to the referee for helpful comments that greatly improved the exposition of the
paper.

2. Symmetric and Alternating Groups

In this section we analyze the largest degree of irreducible characters of the alternating
groups. The main idea is that if one starts with a character χ ∈ Irr(Sn), by considering the
irreducible constituents of IndSn

Sn−1
ResSn

Sn−1
(χ) then one can show that χ itself cannot be too

large. Some further technicalities arise because the symmetric group is easier to analyze, but
we need the result for alternating groups.

We recall some basic combinatorics connected with symmetric groups. By a Young diagram,
we mean a finite subset ∆ of Z>0 × Z>0 such that for all (x, y) ∈ Z>0 × Z>0, (x+ 1, y) ∈ ∆
or (x, y + 1) ∈ ∆ implies (x, y) ∈ ∆. Elements of ∆ are called nodes. We denote by Y (n) the
set of Young diagrams of cardinality n. For any fixed ∆, we let l and k denote the largest x-
coordinate and y-coordinate in ∆ respectively and define aj for 1 ≤ j ≤ k and bi for 1 ≤ i ≤ l
by

aj := max{i | (i, j) ∈ ∆}

and likewise
bi := max{j | (i, j) ∈ ∆}.

Thus, for each ∆, we have a pair of mutually transpose partitions

n = a1 + · · ·+ ak = b1 + · · ·+ bl.

For each (i, j) ∈ ∆, we define the hook Hi,j := Hi,j(∆) to be the set of (i′, j′) ∈ ∆ such that
i′ ≥ i, j′ ≥ j, and equality holds in at least one of these two inequalities. We define the hook
length

h(i, j) := hi,j(∆) := |Hi,j(∆)| = 1 + aj − i+ bi − j,

and set
P := P (∆) :=

∏
(i,j)∈∆

hi,j .

Define A(∆) (resp. B(∆)) to be the set of nodes that can be added (resp. removed) from ∆
to produce another Young diagram:

A(∆) := {(i, j) ∈ Z>0 × Z>0 | ∆ ∪ {(i, j)} ∈ Y (n+ 1)}

and
B(∆) := {(i, j) ∈ ∆ | ∆ \ {(i, j)} ∈ Y (n− 1)}.

Thus A(∆) consists of the pair (1, k + 1) and pairs (aj + 1, j) where j = 1 or aj < aj−1. In
particular, the values i for (i, j) ∈ A(∆) are pairwise distinct, so

n ≥
∑

(i,j)∈A(∆)

(i− 1) ≥ |A(∆)|2 − |A(∆)|
2

,
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and |A(∆)| <
√

2n+ 1. Similarly, B(∆) consists of the pairs (aj , j) where either j = k or aj >
aj+1. Hence

n ≥
∑

(i,j)∈B(∆)

i ≥ |B(∆)|2 + |B(∆)|
2

,

and |B(∆)| <
√

2n. For (i, j) ∈ A(∆), the symmetric difference between A(∆) and A(∆ ∪
{(i, j)}) consists of at most three elements: (i, j) itself and possibly (i+ 1, j) and/or (i, j + 1).
Likewise, the symmetric difference between B(∆) and B(∆ \ {(i, j)}) consists of at most three
elements: (i, j) and possibly (i− 1, j) and/or (i, j − 1).

There are bijective correspondences between elements of Y (n), partitions n =
∑

j aj , dual
partitions n =

∑
i bi, and complex irreducible characters of Sn. By the hook length formula,

the degree of the character associated to ∆ is n!/P (∆).
The branching rule for Sn−1 < Sn asserts that the restriction to Sn−1 of the irreducible

representation ρ(∆) of Sn associated to ∆ ∈ Y (n) is the direct sum of ρ(∆ \ (i, j)) over all
(i, j) ∈ B(∆). By Frobenius reciprocity, it follows that the induction from Sn to Sn+1 of ρ(∆)
is the direct sum of ρ(∆ ∪ {(i, j)}) over all (i, j) ∈ A(∆). We can now prove the main theorem
of this section.

Theorem 2.1. Let S ⊂ R be a finite set. Then there exists N and δ > 0 depending only
on S such that for all n > N and every irreducible character φ of Sn, there exists an irreducible
character ψ of Sn such that

ψ(1)
φ(1)

∈ [δ,∞) \ S.

In particular, if S = S0 := {1, 2, 1/2}, then one can choose N = 120, 000 and δ = 9/65.

Proof. Equivalently, we prove that there exists N and δ > 0 such that, for all n > N and
for all ∆ ∈ Y (n), there exists Γ ∈ Y (n) such that

dim ρ(Γ)
dim ρ(∆)

=
P (∆)
P (Γ)

∈ [δ,∞) \ S.

Consider the decomposition of

IndSn

Sn−1
ResSn

Sn−1
ρ(∆) (2.1)

into irreducible summands of the form ρ(Γ). These summands are indexed by the set N(∆)
of quadruples (i1, j1, i2, j2), where (i1, j1) ∈ B(∆) and (i2, j2) ∈ A(∆ \ {(i1, j1)}). Clearly,
|N(∆)| <

√
2n(
√

2(n− 1) + 1) < (2.01)n (if n > 20, 000), while the degree of the represen-
tation (2.1) equals n dim ρ(∆). Choosing δ ≤ 9/65, we see that the sum of the dimensions of
all the constituents ρ(Γ) with Γ ∈ N(∆) and

dim ρ(Γ)
dim ρ(∆)

< δ

is less than (0.28)n(dim ρ(∆)). Now, choosing

ε =
0.72

maxS
we see that, either there exists an element of N(∆) with corresponding diagram Γ ∈ Y (n) such
that

dim ρ(Γ)
dim ρ(∆)

∈ [δ,∞) \ S
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or there exist at least εn elements of N(∆) with corresponding diagrams Γ such that

dim ρ(Γ)
dim ρ(∆)

∈ S. (2.2)

We need only treat the latter case. Note that ε = 0.36 if S = S0.
Consider octuples (i1, j1, . . . , i4, j4) such that (i1, j1, i2, j2) and (i3, j3, i4, j4) are in N(∆),

every Γ corresponding to either of them satisfies (2.2), the coordinates i1, i2, i3, i4 are pairwise
distinct, and the same is true for the coordinates j1, j2, j3, j4. The number of such octuples
must be at least

(εn− 1)(εn− 7(
√

2n+ 1)).

(Indeed, there are at least εn− 1 choices for (i1, j1, i2, j2) ∈ N(∆) with i1 6= i2 and j1 6= j2
yielding Γ satisfying (2.2). Consider any (i3, j3, i4, j4) ∈ N(∆) yielding Γ satisfying (2.2). One
can check that i3 = i1 iff j3 = j1, i3 = i2 implies j3 = j2 − 1, and j3 = j2 implies i3 = i2 − 1.
Similarly, i4 = i3 iff j4 = j3, i4 = i2 iff j4 = j2, i4 = i1 implies j4 = j1 + 1, and j4 = j1 implies
i4 = i1 + 1.) Observe that

(εn− 1)(εn− 7(
√

2n+ 1)) > (9/10)ε2n2

if n is sufficiently large (n ≥ 105 would suffice for S = S0).
Let us fix one such octuple. We set

∆12 := (∆ \ {(i1, j1)}) ∪ {(i2, j2)}

and

∆34 := (∆ \ {(i3, j3)}) ∪ {(i4, j4)}.

By the distinctness of the i and j coordinates, we have

(i3, j3) ∈ B(∆12)

and

(i4, j4) ∈ A(∆12 \ {(i3, j3)}).

Let

∆1234 := ((∆12 \ {(i3, j3)}) ∪ {(i4, j4)}.

Given (i, j), (i′, j′) ∈ A(∆), we can compare h(i′,j′)(∆) to h(i′,j′)(∆ ∪ {(i, j)}). If i 6= i′ and
j 6= j′, the hook lengths are equal, but if i = i′ or j = j′, then

h(i′,j′)(∆ ∪ {(i, j)}) = h(i′,j′)(∆) + 1.

From this formula, we deduce that

P (∆)P (∆1234)
P (∆12)P (∆34)

=
a(a+ 2)
(a+ 1)2

· b(b− 2)
(b− 1)2

,

where

a = h(min(i2,i4),min(j2,j4))(∆), b = h(min(i1,i3),min(j1,j3))(∆).

Letting S2 = {s1s2 | s1, s2 ∈ S}, we conclude that

P (∆1234)
P (∆)

∈
(
a(a+ 2)
(a+ 1)2

· b(b− 2)
(b− 1)2

)
S2.

As long as δ is chosen less than (9/16)(minS)2, this value is automatically greater than δ. For
instance, if S = S0, then we can choose δ = 9/65. It remains to show that we can choose the
octuple (i1, . . . , j4) such that the value is not in S.
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There are finitely many values of t such that tS2 ∩ S is non-empty, and we need only consider
values of a and b for which

a(a+ 2)
(a+ 1)2

· b(b− 2)
(b− 1)2

lies in this finite set. For instance, if S = S0, then there are exactly seven such values for t:
t = 2i with −3 ≤ i ≤ 3. We claim that for each value t, the set of octuples which achieves
this value is o(n2). The claim implies the theorem. To prove the claim we note that there
are at most (

√
2n+ 1)3 = O(n3/2) possibilities for (i1, j1, i2, j2, i3, j3). Given one such value,

b is determined, so if t is fixed, so is a. For a given value of a and given i2 and j2, there are
at most two possibilities for (i4, j4) ∈ A(∆) with h(min(i2,i4),min(j2,j4))(∆) achieving this fixed
value. The claim follows. More precisely, if S = S0, then the number of octuples in question is
at most 14(

√
2n+ 1)3, which is less than (9/10)ε2n2 when n > 120, 000.

Corollary 2.2. There is some constant ε > 0 such that ε(An) ≥ ε for all n ≥ 5. In fact,
one can choose ε = 2/(120, 000!). Furthermore, ε(An) > 1/209 if n > 120, 000.

Proof. Choose S = S0 = {2, 1, 1/2} and apply Theorem 2.1. Let χ ∈ Irr(An) be of degree
b := b(An) and let φ ∈ Irr(Sn) be lying above χ; in particular φ(1) = rb with r = 1 or 2. By
Theorem 2.1, if n > N := 120, 000, then there is some ψ ∈ Irr(Sn) such that ψ(1)/φ(1) ≥ δ =:
9/65 and ψ(1)/φ(1) /∈ S. Now let ρ ∈ Irr(An) be lying under ψ; in particular, ρ(1) = ψ(1)/s
with s = 1 or 2. Then ρ(1)/χ(1) = (ψ(1)/φ(1)) · (r/s), and so ρ(1)/χ(1) ≥ δ/2 and ρ(1)/χ(1) 6=
1. It follows that ε(An) ≥ δ2/4 > 1/209 for n ≥ N .

On the other hand, if 5 ≤ n ≤ N , then we can use the trivial bound that b(S)2 < |S| and so
ε(S) > 1/|S|, giving ε(An) ≥ 2/(N !).

3. Comparing Unipotent Character Degrees of Simple Groups of Lie Type

Each finite simple group S of Lie type has an irreducible character St of degree St(1) = |S|p,
where p is the underlying characteristic, the so-called Steinberg character (and there is a unique
such character except when S = 2F4(2)′). We refer the reader to [3, Chap. 6] and [5] for this,
as well as for basic facts on Deligne–Lusztig theory. The main aim of this section is to prove
Theorem 1.2 which compares the degree of St with that of the other unipotent characters.

By the results of Lusztig, unipotent characters of isogenous groups have the same degrees,
so it is immaterial here whether we speak of groups of adjoint or of simply connected type;
moreover, all unipotent characters have the center in their kernel, so they can all be considered
as characters of the corresponding simple group.

It is easily checked from the formulas in [3, §13] and the data in [17] that Theorem 1.2 does
in fact hold for exceptional groups of Lie type. The six series of classical groups are handled
in Corollaries 3.3 and 3.8 and Proposition 3.9 after some combinatorial preparations. On the
way we derive some further interesting relations between unipotent character degrees.

3.1. Type GLn

For q > 1 and c = (c1 < . . . < cs) a strictly increasing sequence we set

[c] :=
s∏

i=1

(qci − 1)

and c+m := (c1 +m < . . . < cs +m) for an integer m.
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Lemma 3.1. Let q ≥ 2, s ≥ 1.

(i) Then qa−1
qa−1−1 ≤

qb−1
qb−1−1

if and only if a ≥ b.
(ii) Let c = (c1 < . . . < cs) be a strictly increasing sequence of integers, with c1 ≥ 2. Then:

qs <
[c]

[c− 1]
< qs+1.

Proof. The first part is obvious, and then the second follows by a 2s-fold application of (i)
since

qs <
qcs − 1
qcs−s − 1

=
s∏

i=1

qcs−s+i − 1
qcs−s+i−1 − 1

≤ [c]
[c− 1]

≤
s∏

i=1

qi+1 − 1
qi − 1

=
qs+1 − 1
q − 1

< qs+1.

We denote by χλ the unipotent character of GLn(q) parametrized by the partition λ of n.
Its degree is given by the quantized hook formula

χλ(1) = qa(λ) (q − 1) · · · (qn − 1)∏
h(ql(h) − 1)

,

where h runs over the hooks of λ = (a1 ≥ . . . ≥ ar), and a(λ) =
∑r

i=1(i− 1)ai (see for example
[22, (21)] or [18]).

Proposition 3.2. Let λ = (a1 ≥ . . . ≥ ar−1 > 0) ` n− 1 be a partition of n− 1 and µ, ν
the partitions of n obtained by adding a node at (r, 1), (i, j) respectively, where i < r and
ai = j − 1. Then for all q ≥ 2 the corresponding unipotent character degrees of GLn(q) satisfy

q−j−1χµ(1) < χν(1) < q2−jχµ(1) ≤ χµ(1).

Proof. According to the hook formula, we have to consider the hooks in µ, ν of different
lengths. These lie in the 1st column, the ith rows and in the jth column. Let h = (1 < h2 <
. . . < hr) denote the hook lengths in the 1st column, k = (k1 < . . . < kj−1) the hook lengths
in the ith row and l = (l1 < . . . < li−1) the hook lengths in the jth column of µ. Write h′ =
(h2 < . . . < hr) and k′ = (0 < k1 < . . . < kj−1). Then a threefold application of Lemma 3.1(ii)
shows that

χν(1) = qa(ν)−a(µ) [h]
[h′−1]

[k]
[k′+1]

[l]
[l+1]χµ(1)

< q−r+iqrq1−jq1−iχµ(1) = q2−jχµ(1) ≤ χµ(1),

since j ≥ 2. The other inequality is then also immediate.

Note that ν is the partition obtained from µ by moving one node from the last row (which
contains a single node) to some row higher up. Since clearly any partition of n can be reached
by a finite number of such operations from (1)n, we conclude:

Corollary 3.3. Any unipotent character of GLn(q) other than the Steinberg character
St has smaller degree than St.

A better result can be obtained when q ≥ 3, since then the upper bound in Lemma 3.1(ii)
can be improved to qs+1/2. In that case, ‘moving up’ any node in a partition leads to a smaller
unipotent degree:
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Proposition 3.4. Let q ≥ 3, and ν 6= µ be two partitions of n with ν B µ in the dominance
order. Then the corresponding unipotent character degrees of GLn(q) satisfy χν(1) < χµ(1).

Proof. In our situation, ν can be reached from µ by a sequence of steps of moving up a node
in a partition. Consider one such step, where the node at position (r, s) is moved to position
(i, j), with j > s. A similar estimate as in the proof of Proposition 3.2, but with the improved
upper bound from Lemma 3.1, leads to the result.

Example 3.5. The previous result fails for q = 2; the smallest counterexample occurs for
n = 6, µ = (2)3 C ν = (3)(2)(1), where χµ(1) = 5952 < χν(1) = 6480.

3.2. Type GUn

The analogue of Proposition 3.2 is no longer true for the unipotent characters of unitary
groups, in general. Still, we can obtain a characterization of the Steinberg character by
comparing with character degrees in GLn(q).

Proposition 3.6. Any partition λ of n has r = dn/2e distinct hooks h1, . . . , hr of odd
lengths l(hi) ≤ 2i− 1, 1 ≤ i ≤ r.

Proof. We proceed by induction on n. The result is clear for 2-cores, i.e., triangular
partitions. Now let λ = (a1 ≤ . . . ≤ ar) be a partition of n which is not a 2-core, with
corresponding β-set B = {a1, a2 + 1, . . . , ar + r − 1}. The hook lengths of λ are just the
differences j − i with j ∈ B, i /∈ B, i < j (see [22, Lemma 2]). Since λ is not a 2-core, there
exists j ∈ B with j − 2 /∈ B. Let B′ = {j − 2} ∪B \ {j}, the β-set of a partition µ of n− 2.
We now compare hook lengths in B′ and in B: hooks in B′ from k > j, k ∈ B′, to j become
hooks from k to j − 2 in B, and hooks from j − 2 to k /∈ B′, k < j − 2, become hooks from j
to k in B. In both cases, the length has increased by 2. But we have one further new hook in
B: either from j to j − 1 (if j − 1 /∈ B′), or from j − 1 to j − 2 (if j − 1 ∈ B′), of length 1. So
indeed, in both cases we have produced hooks of the required odd lengths in λ.

Proposition 3.7. Let λ be a partition of n. Then the degree of the unipotent character
of GLn(q) indexed by λ is at least as big as the corresponding one of GUn(q).

Proof. It is well-known that the degree of the unipotent character of GUn(q) indexed by λ
is obtained from the one for GLn(q) by formally replacing q by−q in the hook formula above
and adjusting the sign. Now let h1, . . . , hr denote the sequence of hooks of odd length from
the previous result. Observe that the numerators in the hook formula for GLn(q) and GUn(q)
differ by the factor

∏r
i=1(q

2i−1 + 1)/(q2i−1 − 1). Since (qa + 1)/(qb + 1) < (qa − 1)/(qb − 1)
when b < a, the claim now follows from the hook formula.

It seems that the only case with equality, apart from the trivial cases 1 and St, occurs for
the partition (2)2 of 4.

Since the degree of the Steinberg character of GLn(q) and GUn(q) is the same, the following
is immediate from Corollary 3.3 and Proposition 3.7:
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Corollary 3.8. Any unipotent character of GUn(q) other than the Steinberg character
St has smaller degree than St.

3.3. Other classical types

The unipotent characters of the remaining classical groups G = G(q) (i.e. symplectic and
orthogonal groups) are labelled by symbols, whose definition and basic combinatorics we now
recall (we refer to [18] and [22, Prop. 5] for the hook formula given here). A symbol S =
(X,Y ) is a pair of strictly increasing sequences X = (x1 < . . . < xr), Y = (y1 < . . . < ys) of
non-negative integers. The rank of S is then

rk(S) =
r∑

i=1

xi +
s∑

j=1

yj −

⌊(
r + s− 1

2

)2
⌋
.

The symbol S′ = ({0} ∪ (X + 1), {0} ∪ (Y + 1)) is said to be equivalent to S, and so is the
symbol (Y,X). The rank is constant on equivalence classes. The defect of S is d(S) = ||X| −
|Y ||, which clearly is also invariant under equivalence.

Lusztig has shown that the unipotent characters of classical groups of rank n are naturally
parametrized by equivalence classes of symbols of rank n, with those of odd defect parametrizing
characters in types Bn and Cn, those of defect ≡ 0 (mod 4) characters in type Dn, and those
of defect ≡ 2 (mod 4) characters in type 2Dn. (Here, each so-called degenerate symbol, where
X = Y , parametrizes two unipotent characters in type Dn.)

The degrees of unipotent characters are most conveniently given by an analogue of the hook
formula for GLn(q), as follows. A hook of S is a pair (b, c) ∈ N2

0 with b < c and either b /∈ X,
c ∈ X, or b /∈ Y , c ∈ Y . Thus, a hook of S is nothing else but a hook (as considered in Section 2
and for type A above) of the permutation with associated β-set either X or Y . A cohook of S
is a pair (b, c) ∈ N2

0 with b < c and either b /∈ Y , c ∈ X, or b /∈ X, c ∈ Y . We also set

a(S) :=
∑

{b,c}⊆S

min{b, c} −
∑
i≥1

(
r + s− 2i

2

)
,

where the first sum runs over all 2-element subsets of the multiset X ∪ Y of entries of S, and
b(S) = b|S − 1|/2c − |X ∩ Y | if X 6= Y , respectively b(S) = 0 else. The degree of the unipotent
character χS of a finite classical group G = G(q) parametrized by S is then given as

χS(1) = qa(S) |G|q′
2b(S)

∏
(b,c) hook(qc−b − 1)

∏
(b,c) cohook(qc−b + 1)

,

where the products run over hooks, respectively cohooks of S (see [18, Bem. 3.12 and 6.8]). It
can be checked that this is constant on equivalence classes. It is also clear from this that the
unipotent characters in types Bn and Cn have the same degrees.

For q > 1 and c = (c1 < . . . < cs) a strictly increasing sequence we set

[c]− :=
s∏

i=1

(qci + 1).

Proposition 3.9. Let S be a symbol of rank n, parametrizing a unipotent character of
G = G(q) of rank n. Then χS(1) ≤ St(1), where St denotes the Steinberg character of G, with
equality only if χS = St.

Proof. We argue by induction on n, the case n ≤ 2 being trivial. So let now S = (X,Y ) be
a symbol of rank at least 3. Replacing S by an equivalent symbol, we may assume that 0 /∈ X.
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We first discuss the case where a := max(X ∪ Y ) ∈ X. Writing X = (h1 < . . . < hr < a) (so
h1 > 0), Y = (k1 < . . . < ks), we consider the symbol S′ = (X ′, Y ) where S′ = (0 < h1 < . . . <
hr). Thus

rk(S′) = rk(S)− a, a(S′) = a(S)−
∑

hi −
∑

kj .

We also write

{h̃1, . . . , h̃t} := {0, . . . , a− 1} \X, {k̃1, . . . , k̃t} := {0, . . . , a− 1} \ Y.

Then, with G′ denoting a group of rank rk(S′) and of the same type as G, the hook formula
gives

χS(1) = q
P

hi+
P

kj
|G|q′
|G′|q′

· 1
[h] · [a− h̃] · [k]− · [a− k̃]−

χS′(1).

Application of Lemma 4.1 and the inductive hypothesis for χS′(1) then gives

χS(1) ≤ d2qa−
P

(a−h̃i)−
P

(a−k̃j) St(1),

with d = 32
9 when q = 2, respectively d = 9

5 when q > 2. Now note that h̃1 = 0, and h̃i, k̃j < a,
so the exponent at q is negative unless X = (1, . . . , a), Y = (0, . . . , a− 1) or Y = (0, . . . , a),
when χS = St. Moreover, the required inequality holds as soon as

∑
i≥2(a− h̃i) +

∑
j(a− k̃j)

is at least 4 (when q = 2), respectively at least 2 when q > 2. Also note that when h̃ = (0)
consists of just one entry, then one of the factors d in the estimate goes away, whence we only
need

∑
j(a− k̃j) ≥ 2. There remain exactly eight possibilities for S which can be dealt with

case by case.
In the case when a = max(X ∪ Y ) ∈ Y \X, write X = (h1 < . . . < hr) (so still h1 > 0), Y =

(k1 < . . . < ks < a), and consider the symbol S′ = (X ∪ {0}, Y \ {a}). Then exactly the same
estimates as before apply to show that χS(1) < St(1).

This completes the proof of Theorem 1.2.

4. Theorem 1.1 for Simple Groups of Lie Type

Note that to prove Theorem 1.1 we can ignore any finite number of non-abelian simple
groups, in particular the 26 sporadic groups (of course one can find out the exact value of
ε(S) for each of them; in particular, one can check using [4] that ε(S) > 1 for all the sporadic
groups). Thus, in view of Corollary 2.2, it remains to prove Theorem 1.1 for simple groups of
Lie type.

We begin with some estimates:

Lemma 4.1. Let q ≥ 2. Then the following inequalities hold.
(i)
∏∞

i=1(1− 1/qi) > 1− 1/q − 1/q2 + 1/q5 ≥ exp(−α/q), where α = 2 ln(32/9) ≈ 2.537,
(ii)

∏∞
i=2(1− 1/qi) > 9/16,

(iii)
∏∞

i=k(1 + 1/qi) is smaller than 2.4 if k = 1, 1.6 if k = 2, 1.28 if k = 3, and 16/15 if
k = 5, and

(iv) 1 <
∏n

i=1(1− (−1/q)i) ≤ 3/2.

Proof. (i) As mentioned in [8] (see the paragraph after Lemma 3.4 of [8]), a convenient
way to prove these estimates is to use Euler’s pentagonal number theorem [1, p. 11]:∏∞

i=1(1−
1
qi ) = 1 +

∑∞
n=1(−1)n(q−n(3n−1)/2 + q−n(3n+1)/2)

= 1− q−1 − q−2 + q−5 + q−7 − q−12 − q−15 + · · · (4.1)
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Since q−m ≥
∑∞

i=m+1 q
−i, finite partial sums of this series yield arbitrarily accurate upper and

lower bounds for
∏∞

i=1(1− q−i). In particular, truncating the series (4.1) at the term q−5 yields
the first inequality. Next, consider the function

f(x) := 1− x− x2 + x5 − exp(−αx)

for the chosen α. The choice of α ensures that f(1/2) = 0 = f(0), and f ′′(x) < 0 for all x ∈
[0, 1/2]. It follows that f(x) ≥ 0 on [0, 1/2], yielding the second inequality.

(ii) Clearly,
∞∏

i=2

(1− 1
qi

) ≥
∞∏

i=2

(1− 1
2i

) = 2
∞∏

i=1

(1− 1
2i

) > 2(1− 1
2
− 1

4
+

1
32

) =
9
16
.

(iii) Applying (4.1) with q = 4 and truncating the series at the term q−7 we get
∏∞

i=1(1−
4−i) < 0.6876. Applying (4.1) with q = 2 and truncating the series at the term q−15 we get∏∞

i=1(1− 2−i) > 0.2887. Now
∞∏

i=1

(1 +
1
qi

) ≤
∞∏

i=1

(1 +
1
2i

) =
∏∞

i=1(1−
1
4i )∏∞

i=1(1−
1
2i )

<
0.6876
0.2887

< 2.382.

The other bounds can be obtained by using this bound and noting that
∞∏

i=k

(1 +
1
qi

) ≤
∞∏

i=k

(1 +
1
2i

) =
∏∞

i=1(1 + 1
2i )∏k−1

i=1 (1 + 1
2i )

.

(iv) follows from the estimates

(1− 1
q2k

)(1 +
1

q2k+1
) < 1 < (1 +

1
q2k−1

)(1− 1
q2k

)

for any k ≥ 1.

4.1. Theorem 1.1 for exceptional groups of Lie type

The following result of G. M. Seitz [24, Thm. 2.1] will be basic to our discussion not only of
exceptional but also of classical groups of arbitrary rank:

Theorem 4.2. (Seitz) Let G be a simple, simply connected algebraic group over the
algebraic closure of a finite field of characteristic p, F : G → G a Steinberg endomorphism of
G, and let L := GF . Then b(L) ≤ |L|p′/|T0|, where T0 is a maximal torus of L of minimal order.
For q sufficiently large, this is in fact an equality (namely, whenever Irr(T0) contains at least
one character in general position).

In the above result as well as in Proposition 4.5 and Corollary 4.6, q is the common absolute
value of the eigenvalues of F acting on the character group of an F -stable maximal torus of
G. If L = GF is untwisted and rank(G) = r, then |T0| = (q − 1)r. For the convenience of the
reader, we list |T0| for twisted groups L in Table 1.

Proposition 4.3. Let S be a simple exceptional group of Lie type. Then ε(S) > 1.

Proof. According to the result of Seitz quoted in Theorem 4.2 the maximal degree b(S) is
bounded above by |L|p′/|T0|, where L is the group of fixed points of a simple, simply connected
algebraic group under a Steinberg endomorphism with S = L/Z(L), and T0 is a maximal torus
of L of minimal order. For each of the ten series of exceptional groups of Lie type we give in
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Table 1. Maximal tori of smallest order in twisted groups

L |T0| L |T0|
2B2(q2) q2 −

√
2q + 1 2An(q), n = 2m− 1 (q2 − 1)m/(q + 1)

2G2(q2) q2 −
√

3q + 1 2An(q), n = 2m (q2 − 1)m−1(q2 − q + 1)
3D4(q) (q2 − q + 1)2 2Dn(q), n ≥ 4 (q − 1)n−1(q + 1)
2F4(q2) (q2 −

√
2q + 1)2 2E6(q), q ≥ 7 (q2 − q + 1)3

Table 2 another maximal torus T of L and a lower bound nT for the number of irreducible
Deligne–Lusztig characters RT,θ parametrized by characters θ in general position of this torus,
such that nT (RT,θ(1))2 > (|L|p′/|T0|)2 at least for q > 3 (resp. q2 > 2 for the Suzuki and Ree
groups), and such that RT,θ(1) < b(S). The finitely many small cases can be checked directly.
(The list of character degrees of L is given on Frank Lübeck’s website [17].)

Table 2. Tori in exceptional groups

L |T | nT L |T | nT
2B2(q2) Φ′′

8 (Φ′′
8 − 1)/4 F4(q) Φ12 (Φ12 − 1)/12

2G2(q2) q2 − 1 (q2 − 3)/2 E6(q) Φ9 (Φ9 − 3)/9
G2(q) Φ6 (Φ6 − 3)/6 2E6(q) Φ18 (Φ18 − 3)/9
3D4(q) Φ12 (Φ12 − 1)/12 E7(q) Φ14Φ2 (Φ14 − 7)/14
2F4(q2) Φ′′

24 (Φ′′
24 − 1)/12 E8(q) Φ15 (Φ15 − 1)/30

Here, Φm is the mth cyclotomic polynomial in q, Φ′′
8 = q2 −

√
2q + 1, Φ′′

24 = q4 −
√

2q3 + q2 −
√

2q + 1.

The same proof as above establishes Theorem 1.1 for simple classical groups of bounded
rank.

4.2. Theorem 1.1 for classical groups: The generic case

In what follows, we will view our simple classical group S as L/Z(L), where L = GF as in
Theorem 4.2. We also consider the pair (G∗, F ∗) dual to (G, F ) and the group H := (G∗)F∗

dual to L.
As mentioned above, Theorem 4.2 gives the largest degree of complex irreducible represen-

tations of L, a covering group of the finite simple group of Lie type S = L/Z(L), whenever q
is large enough. To show that this is also the precise value of b(S), we need Proposition 4.5
(below) which is also of independent interest.

First we prove an auxiliary statement:

Lemma 4.4. Let X ∼= Zr and w ∈ GL(X) ∼= GLr(Z) be an element of finite order. Then
the torsion subgroup of the abelian group X/(w − 1)X has order at most 2r.

Proof. The fixed lattice Y := X〈w〉 is a w-invariant pure submodule ofX and Y/(w − 1)Y =
Y is torsion-free, so we may assume without loss that Y = 0. Then the characteristic polynomial
f(t) = det(tI − w) of w factorizes as f(t) =

∏d
j=1(t− εj), where εj are nontrivial roots of unity.

Setting V := X ⊗Z Q it follows that f(t) is the characteristic polynomial of w on V . Hence
X/(w − 1)X has order

|det V (w − 1)| = |f(1)| = |
r∏

j=1

(1− εj)| ≤ 2r,
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as claimed.

Proposition 4.5. Let G be a semisimple algebraic group of rank r ≥ 1 over the algebraic
closure of a finite field and let F : G → G be a Steinberg endomorphism with q > (8.24)r+2r!.
Then for every F -stable maximal torus T of G, the set of regular elements s of T F with
CGF (s) = T F has cardinality greater than (1− 1/2r)|T F |.

Proof. 1) Let X ∼= Zr denote the character group of T . Then the Weyl group W =
NG(T )/T acts on X. By part (3) of the proof of [16, Thm. 2.1], the number of elements
t ∈ T F which are not regular is at most 2rr2(q + 1)r−1.

2) Next we count the number of regular elements t ∈ T F for which CGF (t) 6= T F . For any
such element, there is some g ∈ CGF (t) such that g /∈ T . Thus g induces a nontrivial element
w ∈W , which acts on X as an endomorphism of finite order. Since g is F -stable, the actions
of w and F on X commute, whence Y := (w − 1)X and

Y ⊥ := {u ∈ T | χ(u) = 1, ∀χ ∈ Y }

are F -stable. Therefore, the closed connected subgroup S := (Y ⊥)◦ of T is an F -stable torus.
Also, since g−1tg = t, we have that t ∈ (Y ⊥)F .

As Y ≤ X ∼= Zr and w 6= 1, we can find a basis (χ1, . . . , χr) of X and positive integers
a1, . . . , ad (for some 1 ≤ d ≤ r) such that Y = 〈a1χ1, . . . , adχd〉Z. By the elementary divisor
theorem, the torsion subgroup of X/Y has order equal to

∏d
j=1 aj . Hence

∏d
j=1 aj ≤ 2r by

Lemma 4.4. On the other hand,

ϕ : T → GLr
1, v 7→ (χ1(v), . . . , χr(v)),

defines an isomorphism between T and GLr
1 which maps Y ⊥ onto the closed subgroup

{(u1, . . . , ur) | ui ∈ GL1, u
aj

j = 1, ∀1 ≤ j ≤ d}

of GLr
1 with connected component

{(u1, . . . , ur) | ui ∈ GL1, uj = 1, ∀1 ≤ j ≤ d}.

Thus the latter subgroup must be ϕ(S), and so

|Y ⊥/S| ≤
d∏

j=1

aj ≤ 2r. (4.2)

Since S is an F -stable torus of dimension r − d ≤ r − 1, we see that |SF | ≤ (q + 1)r−1. But
S is a connected normal subgroup of Y ⊥, hence an application of the Lang–Steinberg theorem
and (4.2) implies that

(Y ⊥)F /SF ∼= (Y ⊥/S)F

has order at most 2r. We have shown that |(Y ⊥)F | ≤ 2r(q + 1)r−1.
Recall that Y = (w − 1)X and w ∈W . Since G is semisimple of rank r, one can check that

|W | ≤ (67.5)2rr! (with equality attained for G of type E8). Thus the total number of regular
elements t ∈ T F with CGF (t) 6= T F is at most (67.5)22rr!(q + 1)r−1.

Note that for q > (8.24)r+2r! we have 2rr2 ≤ (0.5)22rr! and (q + 1)/(q − 1) < 1.0036, whence

((67.5)22rr! + 2rr2)(q + 1)r−1 ≤ 68 · 22rr! · (1.0036 · (q − 1))r−1

< (67.76) · (4.0144)rr!(q − 1)r−1

< (q − 1)r/2r.

Since |T F | ≥ (q − 1)r, the proposition follows.
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Corollary 4.6. Let G be a simple simply connected algebraic group of rank r ≥ 1 over the
algebraic closure of a finite field, F : G → G a Steinberg endomorphism with q > (8.24)r+2r!,
and let L := GF . Then the bound |L|p′/|T0| given in Theorem 4.2 actually gives the precise
value of b(L) and also b(S), where S := L/Z(L) is the corresponding simple group of Lie type.

Proof. Let (G∗, F ∗) be dual to (G, F ) and set H := (G∗)F∗
. We apply Proposition 4.5 to

G∗ with the Steinberg endomorphism F ∗ and suppose that q > (8.24)r+2r!. Let T be an F -
stable maximal torus of G such that |T F | = |T0|, and let T ∗ be the F ∗-stable maximal torus
dual to T . By the choice of GF , more than 1− 1/2r of the elements t ∈ T ∗ := (T ∗)F∗

are
regular semisimple with CH(t) = T ∗. On the other hand, observe that [H,H] has index at most
|Z(G)| ≤ 2r in H, whence at least 1/2r of the elements in T ∗ belongs to [H,H]. It follows that
there is some regular semisimple element s ∈ T ∗ ∩ [H,H] such that CH(s) = T ∗. In particular,
|CH(s)| = |T ∗| = |T F | = |T0|. By [5, Theorem 13.23], any character χ in the Lusztig series
E(L, (s)) has degree divisible by |L|p′/|T0|. Furthermore, the condition s ∈ [H,H] guarantees
that χ is trivial at Z(L), whence χ can be viewed as an irreducible character of S.

Theorem 4.7. Let S be a finite simple classical group. Suppose that S is not isomorphic
to any of the following groups:

SLn(2), Sp2n(2), Ω±2n(2),
PSLn(3) with 5 ≤ n ≤ 14, PSUn(2) with 7 ≤ n ≤ 14,
PSp2n(3) or Ω2n+1(3) with 4 ≤ n ≤ 17, PΩ±2n(3) with 4 ≤ n ≤ 30,
PΩ±8 (7), PΩ±2n(5) with 4 ≤ n ≤ 6.

Then ε(S) > 1.

Proof. 1) First we consider the case S = PSLn(q) with q ≥ 3. Then G = SLn(F̄q), G∗ =
PGLn(F̄q), L = SLn(q), H = PGLn(q), and the maximal tori of minimal order in Theorem 4.2
are the maximally split ones, of order (q − 1)n−1. Hence

b(S) ≤ b(L) ≤ B/(q − 1)n−1, where B := |L|p′ = (q2 − 1)(q3 − 1) · · · (qn − 1).

Now we consider a maximal torus T of order qn−1 − 1 in H, with full inverse image T̂ =
Cqn−1−1 × Cq−1 in GLn(q). We will show that, in the generic case, the regular semisimple
elements in T will produce enough irreducible characters of S, all of degree less than b(S), and
with the sum of squares of their degrees exceeding b(S)2.

Assume n ≥ 4. A typical element ŝ of T̂ ∩ L is GLn(F̄q)-conjugate to

diag
(
α, αq, . . . , αqn−2

, α(1−qn−1)/(q−1)
)
,

where α ∈ F×qn−1 . Let

X :=
(
∪n−2

i=1 F×qi ∪ {x ∈ F̄×q | xn(q−1) = 1}
)
∩ F×qn−1 .

Also set m := b(n− 1)/2c. Then for n ≥ 6 we have n−m ≥ 4, and so

|X| <
m∑

i=0

qi + n(q − 1) ≤ qm+1 − 1
2

+ n(q − 1) ≤ qn−3 − 1
2

+ n(q − 1) <
qn−1 − 1

2

since q ≥ 3. Direct calculations show that |X| < (qn−1 − 1)/2 also for n = 4, 5. Thus there
are at least (qn−1 − 1)/2 elements α in F×qn−1 that do not belong to X. Consider ŝ for any
such α. Then all the n eigenvalues of ŝ are distinct, and exactly one of them (namely β :=
α−(qn−1−1)/(q−1)) belongs to Fq. Suppose that x ∈ GLn(F̄q) centralizes ŝ modulo Z(GLn(F̄q)):
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xŝx−1 = γŝ. Comparing the determinant, we see that γn = 1. Suppose that for some i with
0 ≤ i ≤ n− 2, γβ = αqi

. Then (αqi

)n(q−1) = (γβ)n(q−1) = 1, and so α ∈ X, a contradiction.
Hence γβ = β, i.e. γ = 1 and x centralizes ŝ, and clearly CGLn(F̄q)(ŝ) is a maximal torus. So if
s ∈ T is the image of ŝ, then CG∗(s) = CGLn(F̄q)(ŝ)/Z(GLn(F̄q)) is connected and a maximal
torus of G∗; in particular, s is regular. Also, s ∈ PSLn(q) = [H,H]. Hence each such s defines
an irreducible character χs of L, of degree B/|T |, which is trivial at Z(L). So we can view
χs as an irreducible character of S. Each such s has at most q − 1 inverse images ŝ ∈ T̂ ∩ L.
Moreover, since |NH(T )/T | = n− 1, the H-conjugacy class of s intersects T at n− 1 elements.
We have therefore produced at least (qn−1 − 1)/2(q − 1)(n− 1) irreducible characters χs of S,
each of degree

χs(1) = B/|T | = (q2 − 1)(q3 − 1) . . . (qn−2 − 1)(qn − 1).

Note that χs(1) < q2+3+...+(n−2)+n = St(1) ≤ b(S). Hence, to show that ε(S) > 1, it suffices
to verify that

qn−1 − 1
2(q − 1)(n− 1)

·
(

B

qn−1 − 1

)2

>

(
B

(q − 1)n−1

)2

,

equivalently, (q − 1)2n−3 > 2(n− 1)(qn−1 − 1). The latter inequality holds if q = 3 and n ≥ 15,
or if q = 4 and n ≥ 5, or if q ≥ 5 and n ≥ 4. It is straightforward to check that ε(S) > 1 when
n = 2, 3 or (n, q) = (4, 4) (using [9] for the last case).

2) Next let S = PSUn(q) with n ≥ 3. Then G = SLn(F̄q), G∗ = PGLn(F̄q), L = SUn(q),
H = PGUn(q). The maximal tori of minimal order in Theorem 4.2 have order at least
(q2 − 1)n/2/(q + 1). Hence

b(S) ≤ b(L) ≤ B(q + 1)/(q2 − 1)n/2, where B := |L|p′ =
n∏

i=2

(qi − (−1)i).

Now we consider a maximal torus T of order qn−1 − (−1)n−1 in H, with full inverse image
T̂ = Cqn−1−(−1)n−1 × Cq+1 in GUn(q). We will follow the same approach as in the case of
PSLn(q).

Assume that n ≥ 4, and moreover q ≥ 3 if 4 ≤ n ≤ 7. A typical element ŝ of T̂ ∩ L is GLn(F̄q)-
conjugate to

diag
(
α, α−q, . . . , α(−q)n−2

, α((−q)n−1−1)/(q+1)
)
,

where α ∈ Cqn−1−(−1)n−1 < F̄×q . Let Y be the set of elements in Cqn−1−(−1)n−1 that belong to
a cyclic subgroup Cqk−(−1)k of F̄×q for some 1 ≤ k < n− 1 or have order dividing n(q + 1).
Assume n ≥ 9 and set m := b(n− 1)/2c. Then n−m ≥ 5 and so

|Y | ≤
∑m

i=1(q
i − (−1)i) + n(q + 1) ≤

∑m
i=0 q

i + n(q + 1)

=
qm+1 − 1
q − 1

+ n(q + 1) ≤ qn−3 − 1
2

+ n(q + 1) <
qn−1 − 1

2
.

Direct calculations show that |Y | < (qn−1 − 1)/2 also for 4 ≤ n ≤ 8 (recall that we are assuming
q ≥ 3 when 4 ≤ n ≤ 7). Thus there are at least (qn−1 − (−1)n−1)/2 elements of Cqn−1−(−1)n−1

that do not belong to Y . Consider ŝ for any such α. Then all the n eigenvalues of ŝ are
distinct, and exactly one of them (namely α((−q)n−1−1)/(q+1)) belongs to Cq+1 < F̄×q . Arguing
as in the PSL-case, we see that if x ∈ GLn(F̄q) centralizes ŝ modulo Z(GLn(F̄q)), then x
actually centralizes ŝ, and CGLn(F̄q)(ŝ) is a maximal torus. So if s ∈ T is the image of ŝ, then
CG∗(s) = CGLn(F̄q)(ŝ)/Z(GLn(F̄q)) is connected and a maximal torus of G∗; in particular, s is
regular. Also, s ∈ PSUn(q) = [H,H]. Hence each such s defines an irreducible character χs of
L, of degree B/|T |, which is trivial at Z(L). So we can view χs as an irreducible character of S.



Page 16 of 32 MICHAEL LARSEN, GUNTER MALLE, AND PHAM HUU TIEP

Each such s has at most q + 1 inverse images ŝ ∈ T̂ ∩ L. Moreover, since |NH(T )/T | = n− 1,
the H-conjugacy class of s intersects T at n− 1 elements. We have therefore produced at least
(qn−1 − (−1)n−1)/2(q + 1)(n− 1) irreducible characters χs of S, each of degree

χs(1) =
B

|T |
=
∏n

i=2(q
i − (−1)i)

qn−1 − (−1)n−1
.

Note that χs(1) < q2+3+...+(n−2)+n = St(1) ≤ b(S). Hence, to show that ε(S) > 1, it suffices
to verify that

qn−1 − (−1)n−1

2(q + 1)(n− 1)
·
(

B

(qn−1 − (−1))n−1

)2

>

(
B(q + 1)

(q2 − 1)n/2

)2

,

equivalently, (q2 − 1)n > 2(n− 1)(qn−1 − (−1)n−1)(q + 1)3. The latter inequality holds if q = 2
and n ≥ 15, or if q = 3 and n ≥ 6, or if q ≥ 4 and n ≥ 4. It is straightforward to check that
ε(S) > 1 when n = 3 (and q ≥ 3), or (n, q) = (4, 2), (5, 2), (6, 2), (4, 3), (5, 3) (using [17] in the
last case).

3) Here we consider the case S = PSp2n(q) or Ω2n+1(q) with n ≥ 2 and q ≥ 3 (and q is odd
in the Ω-case). Then L = Sp2n(q), resp. L = Spin2n+1(q). The maximal tori of minimal order
in Theorem 4.2 have order at least (q − 1)n. Hence

b(S) ≤ b(L) ≤ B/(q − 1)n, where B := |L|p′ =
n∏

i=1

(q2i − 1).

To simplify the computation, we will view S as a normal subgroup of index ≤ κ := gcd(2, q − 1)
of the Lie-type group of adjoint type K := PCSp2n(q), resp. K := SO2n+1(q). Then any
semisimple element in the dual group K∗ = Spin2n+1(q), resp. Sp2n(q), has connected cen-
tralizer (in the underlying algebraic group). Now we consider a maximal torus T of order
qn − 1 in K∗, and let X be the set of elements in T of order dividing qk ± 1 for some k with
1 ≤ k ≤ n− 1. Setting m := bn/2c we have

|X| ≤
m∑

i=1

((qi + 1) + (qi − 1)) < 2
qm+1 − 1
q − 1

≤ qn−1 − 1 <
qn − 1

3
,

if n ≥ 3. One can also check by direct computation that |X| ≤ (qn − 1)/2 if n = 2. Hence
there are at least (qn − 1)/2 elements of T that are regular semisimple. Each such s defines
an irreducible character χs of K of degree B/|T |. Moreover, since |NK∗(T )/T | = 2n, the K∗-
conjugacy class of s intersects T at 2n elements. We have therefore produced at least (qn −
1)/4n irreducible characters χs of K, each of degree

χs(1) =
B

|T |
=
∏n

i=1(q
2i − 1)

qn − 1
< qn2

= St(1) ≤ b(S).

First we consider the characters χs which split over S. They exist only when |K/S| = κ = 2.
Then the irreducible constituents of their restrictions to S are all distinct, and the sum of
squares of the degrees of the irreducible components of each (χs)|S is χs(1)2/κ. On the other
hand, among the χs which are irreducible over S, at most κ of them can restrict to the same
(given) irreducible character of S. Hence, to show that ε(S) > 1, it suffices to verify that

1
κ
· q

n − 1
4n

·
(

B

qn − 1

)2

>

(
B

(q − 1)n

)2

,

equivalently, (q − 1)2n > 4κn(qn − 1). The latter inequality holds if q = 3 and n ≥ 18, or if
q = 4 and n ≥ 4, or if q = 5 and n ≥ 3, or if q ≥ 7 and n ≥ 2. Using [4] and [9] one can check
that ε(S) > 1 when (n, q) = (2, 3), (2, 4), (2, 5), (3, 3), (3, 4).
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4) Finally, we consider the cases S = PΩ±2n(q), where n ≥ 4 and q ≥ 3. We set ε to 1 or
−1 in the split and non-split cases respectively. Then L = Spin±2n(q), and the maximal tori of
minimal order in Theorem 4.2 have order at least (q − 1)n. Hence

b(S) ≤ b(L) ≤ B/(q − 1)n, where B := |L|p′ = (qn − ε) ·
n−1∏
i=1

(q2i − 1).

As in 3), we will view S as a normal subgroup of index ≤ κ := gcd(4, qn − ε) of the Lie-type
group of adjoint type H := P (CO±

2n(q)◦). Then any semisimple element in the dual group L
has connected centralizer. Now we consider a maximal torus T of order qn − ε in L, and let Y
be the set of elements in T of order dividing qk + 1 or qk − 1 for some k with 1 ≤ k ≤ n− 1. As
in 3) we see that |X| ≤ (qn − ε)/3 since n ≥ 4. Hence there are at least 2(qn − ε)/3 elements of
T that are regular semisimple. Each such s defines an irreducible character χs of H of degree
B/|T |. Moreover, since |NL(T )/T | = 2n, the L-conjugacy class of s intersects T at 2n elements.
We have therefore produced at least (qn − ε)/3n irreducible characters χs of H, each of degree

χs(1) = B/|T | =
n−1∏
i=1

(q2i − 1) < qn(n−1) = St(1) ≤ b(S).

The restriction (χs)|S contains an irreducible constituent ρs of degree at least χs(1)/κ.
Conversely, each ρ ∈ Irr(S) can lie under at most κ distinct irreducible characters of H. Hence,
to show that ε(S) > 1, it suffices to verify that

1
κ
· q

n − ε

3n
·
(

B

κ(qn − ε1)

)2

>

(
B

(q − 1)n

)2

,

equivalently, (q − 1)2n > 3κ3n(qn − ε). The latter inequality holds unless q = 3 and n ≤ 30, or
if q = 5 and n ≤ 6, or if q = 7 and n = 4.

4.3. Theorem 1.1 for classical groups over F2

Now we handle the remaining infinite families of simple classical groups over F2.

Theorem 4.8. If S is any of the following simple classical groups over F2:

SLn(2), Sp2n(2)′, Ωε
2n(2),

then one of the following statements holds:
(i) there exists ψ ∈ Irr(S) with 81/512 ≤ ψ(1)/b(S) < 1; or
(ii) ε(S) > 9/16.

In particular, ε(S) > 1/40 in either case.

Proof. The “small” groups SL3(2) and Sp4(2)′ ∼= A6 are easily handled using [4]. Also set
q = 2. In what follows, it is convenient to view the remaining groups S as finite Lie-type
groups of adjoint type S∗ = (G∗)F∗

= PGLn(2), SO2n+1(2), P (COε
2n(2)◦), respectively, which

are isomorphic to S as abstract groups. We will prove the theorem for S∗, using semisimple
elements in S (which all have connected centralizer in G since G is simply connected) to
parameterize Lusztig series for Irr(S∗).

1) First we consider the case S = SLn(2) with n ≥ 4. Any character χ ∈ Irr(S∗) of largest
degree b(S∗) = b(S) can be parametrized by ((s), φ), where (s) is the conjugacy class of a
semisimple element s ∈ S and φ is a unipotent character of the centralizer C := CS(s). Such a
centralizer is isomorphic to

GLk1(2
d1)× . . .×GLkr (2

dr ),
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where ki, di ≥ 1, k1d1 ≥ k2d2 ≥ . . . ≥ krdr, and
∑r

i=1 kidi = n. Moreover, for each d, the
number of indices i such that di = d is at most the number of conjugacy classes of semisimple
elements in GLkd(2) with centralizer ∼= GLk(2d), i.e. the number of monic irreducible polyno-
mials f(t) of degree d over F2. Since χ(1) = (S : C)2′ · ψ(1) and χ(1) = b(S), by Corollary 3.3
ψ must be the Steinberg character StC of C, and so

ψ = ψ1 ⊗ ψ2 ⊗ . . .⊗ ψr,

where ψi is the Steinberg character of GLki(q
di), of degree qdiki(ki−1)/2.

Observe that s 6= 1, i.e. χ is not unipotent. Otherwise b(S) = St(1) = qn(n−1)/2. However,
the character ρ ∈ Irr(S∗) labeled by ((u),StCS(u)), where u ∈ S is an element of order 3 with
centralizer CS(u) ∼= C3 ×GLn−2(2), has degree

(qn − 1)(qn−1 − 1)
3

· q(n−2)(n−3)/2 > qn(n−1)/2 = b(S)

as n ≥ 4, a contradiction.
Next we show that r > 1. Assume the contrary: C ∼= GLk(qd) with kd = n and d > 1. Then

by Lemma 4.1(ii) we have

χ(1) = qdk(k−1)/2 · (q − 1)(q2 − 1) . . . (qn − 1)
(qd − 1)(q2d − 1) . . . (qkd − 1)

< qdk(k−1)/2 · q
n(n+1)/2−1

9
16q

dk(k+1)/2
=

8
9
qn(n−1)/2

as q = 2. Thus χ(1) < St(1), a contradiction.
Thus we must have that r ≥ 2. Observe that there is a semisimple element t ∈ S with

centralizer
CS(t) ∼= GL1(qk1d1+k2d2)×GLk3(q

d3)× . . .×GLkr (q
dr ).

Choose ψ ∈ Irr(S∗) to be labeled by ((t),StCS(t)). Then

ψ(1)
χ(1)

=
∏k1

i=1(q
id1 − 1) ·

∏k2
i=1(q

id2 − 1)
qd1k1(k1−1)/2 · qd2k2(k2−1)/2 · (qk1d1+k2d2 − 1)

.

By Lemma 4.1(ii), 1 >
∏kj

i=1(q
idj − 1)/qdjkj(kj+1)/2 > 9/32 for j = 1, 2 (in fact we can replace

9/32 by 9/16 if dj > 1). Since (d1, d2) 6= (1, 1), it follows that 1 > ψ(1)/χ(1) > 81/512.

2) Next we consider the case S = Sp2n(2) with n ≥ 3. Since Z(G∗) = 1, by Corollary 14.47
and Proposition 14.42 of [5], S∗ has a unique Gelfand–Graev character Γ, which is the sum
of 2n regular irreducible characters χ(s). Each such χ(s) has Lusztig label ((s),StCS(s)), where
(s) is any semisimple class in S, see e.g. [10].

Note that Γ(1) = |S|2′ =
∏n

i=1(2
2i − 1) > 2n(n+1) · (9/16), with the latter inequality follow-

ing from Lemma 4.1(ii). Hence by the Cauchy–Schwarz inequality we have∑
(s)

χ(s)(1)2 ≥
(
∑

(s) χs(1))2

2n
=

(|S|2′)2

2n
>

9
16

· |S| ≥ 9
16

· b(S)2.

In particular, ε(S) > 9/16 if b(S) is not achieved by any regular character χ(s). So we will
assume that b(S∗) = b(S) is achieved by a regular character χ = χ(s).

According to [26, Lemma 3.6], C := CS(s) = D1 × . . .×Dr is a direct product of groups
of the form GLε

k(qd) (where ε = +1 for GL and ε = −1 for GU) or Sp2m(q). Note that, since
q = 2, C contains at most one factor of the latter form, and no factor of the former form
with (d, ε) = (1, 1). First suppose that all of the factors Di are of the second form. It follows
that s = 1, χ(1) = St. Choosing ψ ∈ Irr(S∗) to be labeled by ((u),StCS(u)), where u ∈ S is an
element of order 3 with centralizer CS(u) ∼= C3 × Sp2n−2(2), we see that

b(S) = χ(1) = 2n2
> ψ(1) =

(22n − 1)
3

· 2(n−1)2 > b(S)/2
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as n ≥ 2.
Next we consider the case where exactly one of the factors Di is of the form GLε

k(qd).
Then, since q = 2 we must actually have r ≤ 2, C = GLε

k(qd)× Sp2m(q) with m := n− kd,
and (d, ε) 6= (1, 1). Hence by Lemma 4.1(ii)

χ(1) = qdk(k−1)/2+m2
·
∏n

j=m+1(q
2j − 1)∏k

j=1(qjd − εj)
< qdk(k−1)/2+m2

· q
n(n+1)−m(m+1)

9
16q

dk(k+1)/2
<

16
9
qn2

.

It is easy to check that χ(1) 6= qn2
. Choosing ψ = St, we then have 1 > ψ(1)/b(S) > 9/16.

Lastly, we consider the case where at least two of the factors Di are of form GLε
k(qd):

C = GLε1
k1

(qd1)×GLε2
k2

(qd2)× . . .×GLεr−1
kr−1

(qdr−1)× Sp2m(q),

where r − 1 ≥ 2 and m can be zero. We will assume that k1d1 ≥ k2d2 ≥ . . . ≥ kr−1dr−1 ≥ 1.
Observe that there is a semisimple element t ∈ S with centralizer

CS(t) ∼= GU1(qk1d1+k2d2)×GLε3
k3

(qd3)× . . .×GLεr−1
kr−1

(qdr−1)× Sp2m(q).

Choose ψ ∈ Irr(S∗) to be labeled by ((t),StCS(t)). Then

ψ(1)
χ(1)

=
∏k1

i=1(q
id1 − εi1) ·

∏k2
i=1(q

id2 − εi2)
qd1k1(k1−1)/2 · qd2k2(k2−1)/2 · (qk1d1+k2d2 + 1)

.

By Lemma 4.1(ii),
∏kj

i=1(q
idj − εij)/q

djkj(kj+1)/2 > 9/16 for j = 1, 2 since (dj , εj) 6= (1, 1). Fur-
thermore, since k1d1 + k2d2 ≥ 2 we have qk1d1+k2d2 + 1 ≤ (5/4)qk1d1+k2d2 . Thus ψ(1)/χ(1) >
81/320, and so we are done if ψ(1) 6= χ(1). Suppose that ψ(1) = χ(1). Then k1 = k2 = 1,
(d1, ε1) = (2, 1), and (d2, ε2) = (1,−1). In this case we can replace t by a semisimple element
t′ with

CS(t′) ∼= GL1(qk1d1+k2d2)×GLε3
k3

(qd3)× . . .×GLεr−1
kr−1

(qdr−1)× Sp2m(q)

and repeat the above argument.

3) Finally, let us consider the case S = Ωε
2n(q) with n ≥ 4. Arguing as in the Sp-case, we

may assume that b(S∗) = b(S) is attained at a regular character χ = χ(s). One can show (see
also [26, Lemma 3.7]) that

C := CS(s) = K1 ×H3 × . . .×Hr

where each Hi with 3 ≤ i ≤ r is of the form GLβ
k(qd) with β = ±1. Furthermore, K1 has

a normal subgroup H1
∼= Ω±2m(q) (where m can be zero) such that K1/H1 is either trivial,

or isomorphic to GU2(2). In the latter case, the Steinberg character of the finite connected
reductive group K1 has degree equal to |K1|2 = 2m(m−1)+1. Thus in either case we may replace
CS(s) by

H1 ×H2 ×H3 × . . .×Hr

(where each Hi is of the form GLβ
k(qd) with β = ±1 or Ω±2m(q), and the latter form can occur

for at most one factor Hi), and identify the Steinberg character StC with StH1 ⊗ . . .⊗ StHr .
First we consider the case s = 1, i.e. C = H1 = S, and χ(1) = St. Choosing ψ ∈ Irr(S∗) to

be labeled by ((u),StCS(u)), where u ∈ S is an element of order 3 with centralizer CS(u) ∼=
C3 × Ω−ε

2n−2(2), we see that

b(S) = χ(1) = 2n(n−1) > ψ(1) =
(2n − ε)(2n−1 − ε)

3
· 2(n−1)(n−2) > b(S)/4

as n ≥ 4.
Next we consider the case where exactly one of the factors Hi is of the form GLα

k (qd).
Then, since q = 2 we must actually have r ≤ 2, C = GLα

k (qd)× Ωβ
2m(q) with m := n− kd, and



Page 20 of 32 MICHAEL LARSEN, GUNTER MALLE, AND PHAM HUU TIEP

(d, α) 6= (1, 1). Hence by Lemma 4.1(ii)

χ(1) = qdk(k−1)/2+m(m−1) ·
(qm + β) ·

∏n
j=m+1(q

2j − 1)

(qn + ε) ·
∏k

j=1(qjd − αj)

< qdk(k−1)/2+m(m−1) · 3
2
· 16
15

· q
m+n(n+1)−m(m+1)

9
16q

n+dk(k+1)/2
< 128

45 q
n(n−1).

It is easy to check that χ(1) 6= qn(n−1). Choosing ψ = St we then have 1 > ψ(1)/b(S) > 45/128.
Lastly, we consider the case where at least two of the factors Hi are of the form GL±k (qd):

C = GLε1
k1

(qd1)×GLε2
k2

(qd2)× . . .×GLεr−1
kr−1

(qdr−1)× Ωβ
2m(q),

where r − 1 ≥ 2 and m can be zero. We will assume that k1d1 ≥ k2d2 ≥ . . . ≥ kr−1dr−1 ≥ 1.
Observe that there is a semisimple element t ∈ S with centralizer

CS(t) ∼= GLα
1 (qk1d1+k2d2)×GLε3

k3
(qd3)× . . .×GLεr−1

kr−1
(qdr−1)× Ωβ

2m(q)

for some α = ±1. Choose ψ ∈ Irr(S∗) to be labeled by ((t),StCS(t)). Then

ψ(1)
χ(1)

=
∏k1

i=1(q
id1 − εi1) ·

∏k2
i=1(q

id2 − εi2)
qd1k1(k1−1)/2 · qd2k2(k2−1)/2 · (qk1d1+k2d2 − α)

.

By Lemma 4.1(ii),
∏kj

i=1(q
idj − εij)/q

djkj(kj+1)/2 > 9/16 for j = 1, 2 since (dj , εj) 6= (1, 1). Fur-
thermore, since k1d1 + k2d2 ≥ 2 we have qk1d1+k2d2 − α ≤ (5/4)qk1d1+k2d2 . Thus ψ(1)/χ(1) >
81/320, and so we are done if ψ(1) 6= χ(1). Suppose that ψ(1) = χ(1). Then k1 = k2 = 1, which
forces α = ε1ε2, (d1, ε1) = (2, 1), and (d2, ε2) = (1,−1). In this last case we must have that
r = 3,

C = GL1(4)×GU1(2)× Ω−ε
2n−6(2),

and

χ(1) =
1
9
· 2(n−3)(n−4)(2n − ε)(2n−3 − ε)(22n−2 − 1)(22n−4 − 1).

In particular, 1 6= χ(1)/St(1) < 4/3, and so we are done.

Corollary 4.9. ε(S) > 2/(120, 000!) for all finite non-abelian simple groups S. In fact,
ε(S) > 1/209 for all but a finite number of finite non-abelian simple groups S.

Proof. The case of alternating groups follows from Corollary 2.2. If S is an exceptional
group of Lie type, then ε(S) > 1 by Proposition 4.3. The same is true for most of the simple
classical groups, see Theorem 4.7, as well as for the 26 sporadic simple groups. If S is an
exception listed in Theorem 4.7, then either ε(S) > 1/40 by Theorem 4.8, or else S belongs to
a finite list of exceptions, for all of which we have |S| < 32000 < (120, 000!)/2, whence ε(S) >
1/|S| > 2/(120, 000!).

One can certainly improve on the bound 2/(120, 000!) by a factor accounting for the small
complex representations of An (of degree n− 1, n(n− 3)/2, etc.) for n ≤ 120, 000, but this is
still a very minor improvement.

4.4. Simple groups of Lie type over sufficiently large fields

We continue to consider simple groups of Lie type S (defined over a finite field Fq) as
L/Z(L), where L = GF , with G a simple simply connected algebraic group in characteristic p
and F : G → G a Steinberg endomorphism. In this subsection, we show that if we fix rank(G)
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and let q tend to infinity, then ε(S) grows as qrank(G) (up to a constant). (We are grateful to
the referee for suggesting us to establish this kind of asymptotic result.) As in Theorem 4.2,
among all F -stable maximal tori of G, choose T such that T0 := T F has smallest order, and
let W (T0) := NG(T )F /T F . Also, let d := |Z(G)|.

Theorem 4.10. Keep the above notation, and let 0 < C < 1 be any constant. Then there
is a constant B = B(r, C) depending on r and C such that, if r := rank(G) is fixed and q > B,
then

qrank(G) > ε(S) ≥ qrank(G) ·
(
C

d
− 1
|W (T0)|

)
.

Proof. 1) For the upper bound, observe that b(S) ≥ St(1) = |L|p, whence

ε(S) <
|S|
b(S)2

≤ |L|
(|L|p)2

< qr.

It remains to prove the lower bound. By Corollary 4.6, b(S) = b(L) when q is large enough.
2) Let m denote the number of characters γ ∈ Irr(S) with γ(1) = b(S). Since |Z(L)| ≤

|Z(G)| = d, we have

ε(S) =
|S|
b(S)2

−m ≥ |L|
db(L)2

−m =
|L|p · |T0|2

d|L|p′
−m. (4.3)

Choosing B = B(r, C) large enough, we will have that |T0| > C1/2qr for q > B(r, C), whence

|L|p · |T0|2

d|L|p′
>
Cqr

d
. (4.4)

It remains to bound m.
Let γ ∈ Irr(S) be such that γ(1) = b(S); in particular, γ(1) is coprime to p. Now we view

S := [H,H] for the corresponding finite Lie-type group H of adjoint type: H = HF for a simple
algebraic group H of adjoint type and a Steinberg endomorphism F : H → H. Consider any
irreducible character ϕ ∈ Irr(H) that lies above γ. Since |H/S| is coprime to p, ϕ(1) is also
coprime to p. Let (H∗, F ∗) be dual to (H, F ) and let H∗ := (H∗)F∗

. Suppose that, in Lusztig’s
parametrization of irreducible characters of H, γ corresponds to a semisimple element s ∈ H∗

and a unipotent character ψ of CH∗(s). Since H∗ is simply connected, CH∗(s) is a connected
reductive group.

Assume that CH∗(s) has semisimple rank at least 1 (equivalently, it is not a torus). Since q is
large enough, by [3, §13.8 and 13.9], ψ(1) is divisible by p if ψ is not the principal character. But
p 6 |ϕ(1), hence ψ(1) = 1, and ϕ(1) = (H : CH∗(s))p′ . Now consider the character ϕ′ ∈ Irr(H)
labeled by s and the Steinberg character of CH∗(s), which has degree divisible by q. Also let
γ′ ∈ Irr(S) be any character which lies under ϕ′. Then ϕ′(1) ≥ qϕ(1), and, since r is bounded
and q is large enough, q > |H/S|. It follows that

γ′(1) ≥ ϕ′(1)
|H/S|

> ϕ(1) ≥ γ(1) = b(S),

a contradiction.
Consequently, CH∗(s) is a (maximal) torus of H∗, s is regular semisimple, ψ(1) = 1, and

ϕ(1) = |H|p′/|CH∗(s)|. Note that the maximal tori of L and of H∗ have the same set of orders;
in particular, |CH∗(s)| ≥ |T0|. Furthermore, |H| = |L|. Since |L|p′/|T0| = γ(1) divides ϕ(1), it
follows that γ(1) = ϕ(1) and |CH∗(s)| = |T0|. Moreover, since CH∗(s) is connected, we also see
that ϕ is just the semisimple character labeled by the H∗-conjugacy class of s.

3) We have shown that any γ ∈ Irr(S) of degree γ(1) = b(S) extends to a semisimple character
ϕ labeled by the H∗-conjugacy class of a regular semisimple element s ∈ H∗ with CH∗(s) a
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maximal torus of smallest order (equal to |T0|). One can check that such a torus is unique up
to conjugacy, both for H and for H∗. Abusing the notation, we will denote the torus of H in
duality with CH∗(s) by T0. Then it has the same Weyl group W (T0), see e.g. [20, Prop. 25.3].
Also, since s is regular semisimple with connected centralizer, such a semisimple character ϕ is
just a Deligne–Lusztig character ±RT0,ϑ, where ϑ ∈ Irr(T0) is in general position. The same is
true for all the characters in the W (T0)-orbit of ϑ, and this orbit has length |W (T0)|. Certainly,
m does not exceed the number of such characters ϕ, and the latter does not exceed (in fact
equals to) the number of regular orbits of W (T0) on Irr(T0). Hence

m ≤ | Irr(T0)|
|W (T0)|

=
|T0|

|W (T0)|
≤ qr

|W (T0)|
.

Together with (4.3) and (4.4), this implies the desired lower bound.

5. The Largest Degrees of Simple Groups of Lie Type

Let L be a finite Lie-type group of simply connected type over Fq. When q is large enough
in comparison to the rank of L, Theorem 4.2 gives us the precise value of b(L). However, we do
not have a formula for b(L) for small values of q. In the extreme case L = SLn(2), there does
not even seem to exist a decent upper bound on b(L) in the literature, aside from the trivial
bound b(L) < |L|1/2. On the other hand, as a polynomial of q, the degree of the Steinberg
character St is the same as that of the bound in Theorem 4.2. So it is an interesting question
to study the asymptotic of the quantity c(L) := b(L)/St(1). In this section we will prove upper
and lower bounds for c(L) for finite classical groups.

5.1. Groups of type A

Theorem 5.1. Let G be any of the following Lie-type groups of type A: GLn(q), PGLn(q),
SLn(q), or PSLn(q). Then the following inequalities hold:

max

{
1,

1
4

(
logq((n− 1)(1− 1

q
) + q2)

)3/4
}
≤ b(G)
qn(n−1)/2

< 13(logq(n(q − 1) + q))2.54.

In particular,

1
4

(
logq

n+ 7
2

)3/4

<
b(G)

qn(n−1)/2
< 13(1 + logq(n+ 1))2.54.

Proof. 1) Since the Steinberg character of GLn(q) is trivial at Z(GLn(q)) and stays
irreducible as a character of PSLn(q), the inequality b(G) ≥ qn(n−1)/2 is obvious. Next we
prove the upper bound

c(G) :=
b(G)

qn(n−1)/2
< 13(logq(n(q − 1) + q))2.54

for G = GLn(q), which then also implies the same bound for all other groups of type A. It is
not hard to see that the arguments in p. 1 of the proof of Theorem 4.8 also carry over to the
case of G = GLn(q). It follows that c(G) is just the maximum of

P :=
∏n

i=1(1− q−i)∏m
j=1

∏kj

i=1(1− q−idj )
,

where the maximum is taken over all possible m, kj , dj ≥ 1 with k1d1 ≥ . . . ≥ kmdm and∑m
j=1 kjdj = n, and for each d = 1, 2, . . ., the number ad of the values of j such that dj equals
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to d does not exceed the number nd of monic irreducible polynomials f(t) of degree d over Fq;
in particular, ad < qd/d.

By Lemma 4.1(ii), the numerator of P is bounded between 9/32 and 1 for all q ≥ 2. It
remains to bound (the natural logarithm L of) the denominator of P . By Lemma 4.1(i),∏∞

i=1(1− q−idj ) > exp(−αq−dj ) with α = 2 ln(32/9). Hence,

−L/α <
m∑

j=1

q−dj =
n∑

d=1

adq
−d.

The constraints imply
∑n

d=1 dad ≤ n and ad < qd/d. Replacing the ad with real numbers xd,
we want to maximize

∑∞
d=1 xdq

−d subject to the constraints
∞∑

d=1

dxd ≤ n, 0 ≤ xd ≤ qd/d.

Since the function q−t/t is decreasing on (0,∞), we see that there exists some d0 (depending
on n) such that the sum is optimized when xi = qi/i for all i < d0 and xi = 0 for all i > d0.
Thus d0 is the largest integer such that

∑d0−1
d=1 (qd/d)d =

∑d0−1
d=1 qd = (qd0 − q)/(q − 1) does

not exceed n, whence
d0 ≤ logq(n(q − 1) + q) < 1 + logq(n+ 1).

On the other hand,
d0∑

d=1

xdq
−d ≤

d0∑
d=1

1
d
< 1 + ln(d0).

Thus L > −α(1 + ln(d0)) and so

P < e−L < eα(1+ln(d0)) = eαdα
0 < 13(logq(n(q − 1) + q))2.54

by the choice α = 2 ln(32/9).

2) Now we prove the lower bound

c(S) :=
b(S)

qn(n−1)/2
>

1
4

(
logq((n− 1)(1− 1

q
) + q2)

)3/4

for S = PSLn(q), which then also implies the same bound for all other groups of type A. As
above, let nd be the number of monic irreducible polynomials f(t) over Fq. Arguing as in p.
1) of the proof of Theorem 4.7, we see that the total number of elements of Fqd which do not
belong to any proper subfield of Fqd is at least 3qd/4 when d ≥ 3 and at most qd − 1. It follows
that for d ≥ 3 we have

3qd

4d
≤ nd <

qd

d
. (5.1)

Since b(S) ≥ St(1), the claim is obvious if n ≤ q3. Hence we may assume that n ≥ q3 + 1 ≥
3n3 + 3. Let d∗ ≥ 3 be the largest integer such that m :=

∑d∗

d=3 dnd ≤ n− 3. In particular,

d∗+1∑
d=3

qd >

d∗+1∑
d=3

dnd ≥ n− 2,

and so
d∗ + 1 ≥ logq((n− 1)(1− 1/q) + q2). (5.2)

Observe that G1 := GLm(q) contains a semisimple element s1 with

CG1(s1) = GL1(q3)n3 ×GL1(q4)n4 × . . .×GL1(qd∗)nd∗ .
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(Indeed, each of the nd monic irreducible polynomials of degree d over Fq gives us an embedding
GL1(qd) ↪→ GLd(q).) If det(s1) = 1, then choose s := diag(In−m, s1) so that

CG(s) = GLn−m(q)× CG1(s1).

Otherwise we choose s := diag(In−m−1,det(s1)−1, s1) so that

CG(s) = GLn−m−1(q)×GL1(q)× CG1(s1).

In either case, det(s) = 1 and so s ∈ [G,G] for G = GLn(q). Now consider the (regular)
irreducible character χ labeled by ((s),StCG(s)). The inclusion s ∈ [G,G] implies that χ is
trivial at Z(G). Also, our choice of s ensures that s has at most two eigenvalues in F×q :
the eigenvalue 1 with multiplicity ≥ n−m− 1 ≥ 2, and at most one more eigenvalue with
multiplicity 1. Hence, for any 1 6= t ∈ F×q , s and st are not conjugate in G. To each such t one
can associate a linear character t̂ ∈ Irr(G) in such a way that the multiplication by t̂ yields a
bijection between the Lusztig series E(G, (s)) and E(G, (st)) labeled by the conjugacy classes
of s and st, cf. [5, Prop. 13.30]. Since the distinct Lusztig series are disjoint, we conclude that
the number of linear characters t̂ ∈ Irr(G) such that χt̂ = χ is exactly one. It then follows by
[14, Lemma 3.2(i)] that χ is irreducible over SLn(q). Thus we can view χ as an irreducible
character of S = PSLn(q).

Next, in the case det(s1) = 1 we have

χ(1)
qn(n−1)/2

=
∏n

i=n−m+1(1− q−i)∏d∗

j=3(1− q−j)nj

,

whereas in the case det(s1) 6= 1 we have that

χ(1)
qn(n−1)/2

=
∏n

i=n−m(1− q−i)

(1− q−1)
∏d∗

j=3(1− q−j)nj

.

Since n−m ≥ 3, in either case we have

χ(1)
qn(n−1)/2

>

∏∞
i=4(1− q−i)∏d∗

j=3(1− q−j)nj

.

By Lemma 4.1(ii), the numerator is at least (9/16) · (4/3) · (8/7) = 6/7. To estimate the
denominator, observe that 1/(1− x) > ex for 0 < x < 1. Applying (5.1) we now see that

ln
(

1Qd∗
j=3(1−q−j)nj

)
>
∑d∗

j=3 q
−jnj ≥

∑d∗

j=3
3
4j

≥ 3
4 (ln(d∗ + 1)− 1− 1

2 ) = 3 ln(d∗+1)
4 − 9

8 .

Together with (5.2) this implies that

χ(1)
qn(n−1)/2

>
6

7e9/8

(
logq((n− 1)(1− 1

q
) + q2)

)3/4

>
1
4

(
logq((n− 1)(1− 1

q
) + q2)

)3/4

.

5.2. Other classical groups

Abusing the notation, by a group of type Cn over Fq we mean any of the following groups:
Sp2n(q) (of simply connected type), PCSp2n(q) (of adjoint type), or PSp2n(q) (the simple
group, except for a few “small” exceptions). Similarly, by a group of type Bn over Fq we mean
any of the following group: Spin2n+1(q) (of simply connected type), SO2n+1(q) (of adjoint
type), or Ω2n+1(q) (the simple group, except for a few “small” exceptions). By a group of type
Dn or 2Dn over Fq we mean any of the following group: Spinε

2n(q) (of simply connected type),
PCOε

2n(q)◦ (of adjoint type), PΩε
2n(q) (the simple group, except for a few “small” exceptions),
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SOε
2n(q), as well as the half-spin group HS2n(q). We refer the reader to [3] for the definition of

these finite groups of Lie type.

Theorem 5.2. Let G be a group of type Bn, Cn, Dn, or 2Dn over Fq. If q is odd, then the
following inequalities hold:

max

{
1,

1
5

(
logq

4n+ 25
3

)3/8
}
≤ b(G)

St(1)
< 38(1 + logq(2n+ 1))1.27.

If q is even, then the following inequalities hold:

max
{

1,
1
5
(
logq(n+ 17)

)3/8
}
≤ b(G)

St(1)
< 8(1 + logq(2n+ 1))1.27.

Proof. In all cases, the bound b(G)/St(1) ≥ 1 is obvious since St is irreducible over any of
the listed possibilities for G.

1) We begin by proving the upper bound in the cases where G is of type Bn, respectively
of type Dn or 2Dn, and q is odd and n ≥ 3. Let V = F2n+1

q , respectively V = F2n
q , be endowed

with a non-degenerate quadratic form. Then it is convenient to work with the special Clifford
group G := Γ+(V ) associated to the quadratic space V , see for instance [27]. In particular,
G maps onto SO(V ) with kernel Cq−1, and contains Spin(V ) as a normal subgroup of index
q − 1. Furthermore, the dual group G∗ can be identified with the conformal symplectic group
CSp2n(q) in the B-case, and with the group CO(V )◦ in the D-case, cf. [7, §3]. Observe that
the adjoint group PCO(V )◦ contains PSO(V ) as a normal subgroup of index 2. Similarly, the
half-spin group contains a quotient of Spin(V ) (by a central subgroup of order 2) as a normal
subgroup of index 2. Hence, it suffices to prove the indicated upper bound (with constant 19)
for this particular G. Similarly, it will suffice to prove the indicated lower bound (with constant
1/5) for the simple group S = PΩ(V ).

Let s ∈ G∗ be any semisimple element. Consider for instance the B-case and let τ(s) ∈
F×q denote the factor by which the conformal transformation s ∈ CSp2n(q) changes the
corresponding symplectic form. Also set H := Sp2n(q) and denote by F×2

q the set of squares in
F×q . Then by [21, Lemma 2.4] we have that

C := CG∗(s) = CH(s) · Cq−1,

with

CH(s) =
∏

i

GLεi

ki
(qdi)×

{
Spl(q2), τ(s) /∈ F×2

q , (B1)
Sp2k(q)× Sp2l−2k(q), τ(s) ∈ F×2

q , (B2),

where
∑

i kidi = n− l, εi = ±1, and 0 ≤ k ≤ l ≤ n (and we use (B1) and (B2) to label the two
subcases which can arise). In theD-case, let τ(s) ∈ F×q denote the factor by which the conformal
transformation s ∈ CO(V )◦ changes the corresponding quadratic form; also set H := SO(V ).
Then by [21, Lemma 2.5] we have that

C := CG∗(s) = CH(s) · Cq−1,

with

CGO(V )(s) ∼=
∏

i

GLεi

ki
(qdi)×

{
GO±

l (q2), τ(s) /∈ F×2
q , (D1)

GO±
2k(q)×GO±

2l−2k(q), τ(s) ∈ F×2
q , (D2),

where
∑

i kidi = n− l, εi = ±1, and 0 ≤ k ≤ l ≤ n (and we use (D1) and (D2) to label the
two subcases which can arise).
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On the set of monic irreducible polynomials of degree d in Fq[t] (regardless of whether q is odd
or not), one can define the involutive map f 7→ f̌ such that xdf(1/x) is a scalar multiple of f(x).
One can show that such an f can satisfy the equality f = f̌ only when 2|d and αqd/2+1 = 1 for
every root α of f . Hence, if n∗d denotes the number of monic irreducible polynomials of degree
d over Fq with f 6= f̌ , then

n∗d <
qd

d
, and n∗d ≥

3qd

4d
if d ≥ 3 and q ≥ 3, or if d ≥ 5 and q = 2. (5.3)

The former inequality is obvious. The latter inequality follows from (5.3) when d is odd (as
n∗d = nd in this case), and by direct check when d = 4 or (q, d) = (2, 6). Assume d = 2e ≥ 6 and
(q, d) 6= (2, 6). Then the number of elements of Fqd which belong to a proper subfield of Fqd or
to the subgroup Cqd/2+1 of F×

qd is at most

qe +
e∑

i=1

qi < qe(q + 1) < qd/4,

whence n∗d > 3qd/4 as stated.
In either case, decompose the characteristic polynomial of the transformation s into a product

of powers of distinct monic irreducible polynomials over Fq. Then the factorGLεi

ki
(qdi) in C with

εi = 1, respectively with εi = −1, corresponds to a factor (fif̌i)ki in this decomposition with
deg(fi) = di and fi 6= f̌i, respectively to a factor fki

i in this decomposition with deg(fi) = 2di

and fi = f̌i. In particular, if ad denotes the number of factors GLki(q
d
i ) in C with di = d, then

ad ≤
n∗d
2
<
qd

2d
,

∑
d

dad ≤ n. (5.4)

Certainly, StC(1) = |C|p for the prime p dividing q. But, since the centralizer of s in the
corresponding algebraic group is (most of the time) disconnected, we cannot apply Theorem
1.2 directly to say that b(G) is attained by the regular character χ = χ(s) labeled by ((s),StC).
Nevertheless, we claim that the degree of any unipotent character ψ of C is at most 2κ · StC(1)
and so b(G) ≤ 2κχ(1), where κ = 2 in the (D2)-case and κ = 1 otherwise. Indeed, by definition
the unipotent character ψ of the (usually disconnected) group C is an irreducible constituent of
IndC

D(ϕ) for some unipotent character ϕ of D := Z(G∗)CH(s). In turn, ϕ restricts irreducibly
to a unipotent character of the (usually disconnected) group CH(s). It is easy to see that
CH(s) contains a normal subgroup D1 of index κ, which is a finite connected group, in fact a
direct product of subgroups of form GLεi

ki
(qdi), Spl(q2), Spl(q), SO±

l (q2), or SO±
l (q). Again by

definition ϕ|CH(s) is an irreducible constituent of IndCH(s)
D1

(ϕ1) for some unipotent character
ϕ1 of D1. Now we can apply Theorem 1.2 to D1 to see that ϕ1(1) ≤ StD1(1) = |D1|p = |C|p.
Since |C/D| = 2 and |CH(s)/D1| = κ, we conclude that ψ(1) ≤ 2κ|C|p, as stated.

Observe that (G∗ : C)p′ = (H : D1)p′/κ. We have therefore shown that

b(G) = χ(1) ≤ 2(H : D1)p′ · |D1|p.

By Lemma 4.1(i), (iv),
∏∞

i=1(1− q−2i) > 71/81 since q ≥ 3, and
∏kj

i=1(1− (εjq−dj )i) > 1 if
εj = −1. Furthermore, ql ± 1 ≥ (2/3)ql and qn ± 1 ≤ (28/27)qn since n, q ≥ 3. Using these
estimates, we see that

c(G) ≤ A∏
j : εj=1

∏kj

i=1(1− q−idj )
. (5.5)

Here, A = 2 · (28/27) · (81/71) · (3/2)2 = 378/71 in the (D2)-case. Similarly, A = 2 in the (B1)-
case, A = 162/71 in the (B2)-case, and A = 28/9 in the (D1)-case. By Lemma 4.1(i), c(G) ≤
A · exp(α

∑
d adq

−d) with α = 2 ln(32/9), and ad is subject to the constraints (5.4). Now we can
argue as in p. 1) of the proof of Theorem 5.1 to bound

∑
d adq

−d from above. In particular, we
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get
∑

d adq
−d ≤ (1 + ln(d0))/2, where d0 is the largest integer such that

∑d0−1
d=1 d(qd/2d) ≤ n,

i.e.
d0 ≤ logq(2n(q − 1) + q) < 1 + logq(2n+ 1).

Putting everything together, we obtain

c(G) ≤ Aeα/2d
α/2
0 < Ae1.27(1 + logq(2n+ 1))1.27 (5.6)

and so we are done, as Ae1.27 < 19.

2) Next we briefly discuss how one can prove the upper bound in the remaining cases.
2a) Consider the case G is of type Cn over Fq with q odd. As above, it suffices to prove the

upper bound with the constant 19 for G = Sp2n(q). In this case, G∗ = SO2n+1(q), and if s ∈ G∗
is a semisimple element, then the structure of CGO2n+1(q)(s) is as described in the (D2)-case.
Arguing as above, we arrive at (5.5) and (5.6) with Ae1.27 = 2 · (81/71) · (3/2)2 · e1.27 < 18.3.

2b) Next suppose that G is of type Cn over Fq with q even. In this case, G∗ ∼= Sp2n(q), and
if s ∈ G∗ is a semisimple element, then the structure of CG∗(s) is as described in the (B2)-case
with k = 0. Arguing as above, we arrive at (5.5) and (5.6) with Ae1.27 = e1.27 < 3.6.

2c) Finally, let G = Ωε
2n(q) with q even and n ≥ 4; in particular, G∗ ∼= G. If s ∈ G∗ is a

semisimple element, then the structure of CGOε
2n(q)(s) is as described in the (D2)-case with

k = 0. Arguing as above and using the estimates ql ± 1 ≥ ql/2 and qn ± 1 ≤ (17/16)qn, we
arrive at (5.5) and (5.6) with Ae1.27 = 2 · (17/16) · e1.27 < 7.6 for q ≥ 4. As in p. 3) of the proof
of Theorem 4.8, in the case q = 2 we need some extra care if CG(s) contains a factor K1 :=
((C3 × C3)× Ω±2r(2)) · 2, where C3 × C3 is the (unique) subgroup of index 2 in GU2(2). We
claim that we still have the bound θ(1) ≤ |K1|2 for any unipotent character θ of K1. Indeed, K1

is a normal subgroup of index 2 of K̃1 := GU2(2)×GO±
2r(2). Now θ is an irreducible constituent

of some unipotent character θ̃ = λ⊗ µ of K̃1, where λ ∈ Irr(GU2(2)) and µ ∈ Irr(GO±
2r(2)) are

unipotent. It follows that the irreducible constituents of θ|Ω±2r(2) are unipotent characters of
H1 := Ω±2r(2) and so have degree at most StH1(1) by Theorem 1.2. But C3 × C3 is abelian, so
θ(1) ≤ 2 · StH1(1) = |K1|2. Now we can proceed as in the case q ≥ 4.

3) Now we proceed to establish the logarithmic lower bound for the simple groups S of type
Dn or 2Dn over Fq with q odd and n ≥ 4. It is convenient to work instead with G := SOε

2n(q),
since G∗ ∼= G. Since the lower bound is obvious when n ≤ q3, we will assume that n > q3 >
3n∗3 + 2. Let d∗ ≥ 3 be the largest integer such that m :=

∑d∗

d=3 d(n
∗
d/2) ≤ n− 2. In particular,

d∗+1∑
d=3

qd

2
>

d∗+1∑
d=3

d(n∗d/2) ≥ n− 1,

and so
d∗ + 1 ≥ logq((2n− 1)(1− 1/q) + q2). (5.7)

Observe that G1 := SO+
2m(q) contains a semisimple element s1 with

CG1(s1) = GL1(q3)n∗3/2 ×GL1(q4)n∗4/2 × . . .×GL1(qd∗)n∗d∗/2.

(Indeed, each of the n∗d monic irreducible polynomials f of degree d over Fq with f 6= f̌ gives us
an embedding GL1(qd) ↪→ SO+

2d(q).) If s1 ∈ Ω+
2m(q), then choose s := diag(I2n−2m, s1) so that

CG(s) = SOε
2n−2m(q)× CG1(s1).

Suppose for the moment that s1 /∈ Ω+
2m(q). Note that there is some δ ∈ Fq2 \ (Cq+1 ∪ Fq)

such that h 6= ȟ for the minimal (monic) polynomial h ∈ Fq[t] of δ and moreover the Fq-
norm of δ is a non-square in F×q . Hence by [13, Lemma 2.7.2], under the embedding
GL1(q2) ↪→ GL2(q) ↪→ SO+

4 (q), δ gives rise to an element s2 ∈ SO+
4 (q) \ Ω+

4 (q). Now we choose
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s := diag(I2n−2m−4, s2, s1) so that

CG(s) = SOε
2n−2m−4(q)×GL1(q2)× CG1(s1).

Our construction ensures that s ∈ [G,G] = Ωε
2n(q).

Next we consider the (regular) irreducible character ρ labeled by ((s),StCG(s)). The inclusion
s ∈ [G,G] implies that ρ is trivial at Z(G). Since S = PΩε

2n(q) is a normal subgroup of index
2 in G/Z(G), we see that S has an irreducible character χ of degree at least ρ(1)/2. Hence in
the case s1 ∈ Ω+

2m(q) we have

χ(1)
St(1)

≥ 1
2
·
∏n−1

i=n−m(1− q−2i) · (1− εq−n)∏d∗

j=3(1− q−j)n∗j /2 · (1− εqm−n)
,

whereas in the case s1 /∈ Ω+
2m(q) we have that

χ(1)
St(1)

≥ 1
2
·

∏n−1
i=n−m−2(1− q−2i) · (1− εq−n)∏d∗

j=3(1− q−j)n∗j /2 · (1− εqm−n+2) · (1− q−2)

(with the convention that 1− εqm−n+2 = 1 when m = n− 2). Observe that (1− εq−n)/(1−
εq−k) > q/(q + 1) ≥ 3/4 for 0 ≤ k ≤ n. Furthermore, since n ≥ m+ 2 we have

n−1∏
i=n−m

(1− q−2i) >
∏n−1

i=n−m−2(1− q−2i)
1− q−2

>

∞∏
i=2

(1− q−2i) >
71
72

by Lemma 4.1(i). Thus

c(S) ≥ χ(1)
St(1)

>
B∏d∗

j=3(1− q−j)n∗j /2
, (5.8)

with B = (71/72) · (3/4) · (1/2) = 71/192. Applying (5.3) we now see that

ln

(
1∏d∗

j=3(1− q−j)n∗j /2

)
>

d∗∑
j=3

q−j
n∗j

2
≥

d∗∑
j=3

3
8j

≥ 3 ln(d∗ + 1)
8

− 9
16
.

Together with (5.7) this implies that

c(S) >
B

e9/16

(
logq((2n− 1)(1− 1

q
) + q2)

)3/8

>
B

e9/16

(
logq

4n+ 25
3

)3/8

, (5.9)

and so we are done, since Be−9/16 > 1/5.

4) We will now briefly discuss how one can prove the lower bound in the remaining cases.
Note that the lower bound is obvious when n ≤ q6, so we will assume n > q6.

4a) Consider the case G is of type Cn over Fq with q odd; in particular, G∗ = SO2n+1(q).
Choose d∗ ≥ 3 largest possible such that m :=

∑d∗

d=3 dn
∗
d/2 ≤ n− 2, and so (5.7) holds. Also

choose s1 ∈ G1 := SO2m+1(q) a semisimple element with

CG1(s1) =
d∗∏

d=3

GL1(qd)n∗d/2.

If s1 ∈ Ω2m+1(q) then we choose s := diag(I2n−2m+1, s1), and if s1 /∈ Ω2m+1(q) then we choose
s := diag(I2n−2m−3, s2, s1) where s2 is defined as in 3). As above, s gives rise to a regular
character ρ of G which is trivial at Z(G), so ρ can be viewed as an irreducible character of
S := PSp2n(q). The same arguments as in 3) now show that (5.8) holds with B = 71/72, and
(5.9) holds with Be−9/16 > 1/2.
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4b) Assume now that G = SO2n+1(q) with q odd. Then we choose d∗ and m as in 4a), and
choose s ∈ G∗ = Sp2n(q) a semisimple element with

CG(s) = Sp2n−2m(q)×
d∗∏

d=3

GL1(qd)n∗d/2.

Let χ be an irreducible constituent over S := Ω2n+1(q) of the regular character labeled by (s).
The same arguments as in 3) now show that (5.8) holds with B = (71/72) · (1/2), and (5.9)
holds with Be−9/16 > 1/4.

4c) Next suppose that G is of type Cn over Fq with q even; in particular, G∗ ∼= Sp2n(q).
Choose d∗ ≥ 5 largest possible such that m :=

∑d∗

d=5 dn
∗
d/2 ≤ n, and so instead of (5.7) we now

have
d∗ + 1 > logq((2n+ 3)(1− 1/q) + q4). (5.10)

We can find a semisimple element s ∈ G∗ such that

CG∗(s) = Sp2n−2m(q)×
d∗∏

d=3

GL1(qd)n∗d/2.

By Lemma 4.1(i),
∏∞

i=1(1− q−2i) > 11/16. Considering the regular character ρ labeled by (s),
we now obtain

c(S) ≥ ρ(1)
St(1)

>
B∏d∗

j=5(1− q−j)n∗j /2
, (5.11)

with B = (11/16). Applying (5.3) and arguing as in 3), we arrive at

c(S) >
B

e25/32

(
logq((2n+ 3)(1− 1

q
) + q4)

)3/8

>
B

e25/32

(
logq(n+ 17)

)3/8
, (5.12)

and so we are done, since Be−25/32 > 0.3.
4d) Finally, let G = Ωε

2n(q) with q even and n ≥ 4; in particular, G∗ ∼= G. Now we choose d∗

and m as in 4c), and fix a semisimple element s ∈ G∗ with

CG∗(s) = Ωε
2n−2m(q)×

d∗∏
d=3

GL1(qd)n∗d/2.

Using the estimate (1− εq−n)/(1− εqm−n) > 2/3 and arguing as in 4c), we see that (5.11)
holds with B = (11/16) · (2/3) = 11/24. Consequently, (5.12) holds with Be−25/32 > 1/5.

Following the same approach, A. Schaeffer has proved:

Theorem 5.3. [23] Let G be any of the following twisted Lie-type groups of type A:
GUn(q), PGUn(q), SUn(q), or PSUn(q). Then the following inequalities hold:

max

{
1,

1
4

(
logq((n− 1)(1− 1

q2
) + q4)

)2/5
}
≤ b(G)
qn(n−1)/2

< 2(logq(n(q2 − 1) + q2))1.27.

5.3. Proof of Theorem 1.3

The cases where G is an exceptional group of Lie type follow from the proof of Proposition
4.3. Consider the case G is classical. Then the upper bound follows from Theorems 5.1, 5.2,
and 5.3. We need only to add some explanation for the groups of type A, twisted or untwisted.
For instance, let G be a group of Lie type in the same isogeny class with L := SLn(q). Then
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G ∼= (L/Z) · Cd, where Z is a central subgroup of order d of L, and furthermore the subgroup of
all automorphisms of L/Z induced by conjugations by elements in G is contained in PGLn(q).
Now consider any χ ∈ Irr(G). Let χ1 be an irreducible constituent of χ|L/Z viewed as a character
of L and let χ2 be an irreducible constituent of IndH

L (χ1), where H := GLn(q). Since the
quotients G/(L/Z) and H/L are cyclic, we see that χ(1)/χ1(1) is the index (in G) of the
inertia group of χ1 in G, which is at most the index (in H) of the inertia group of χ1 in H, and
the latter index is just χ2(1)/χ1(1). It follows that χ(1) ≤ χ2(1) ≤ b(H). The same argument
applies to the twisted case of type A.

For the lower bound, observe that there is some dε ≥ 5 depending on ε such that

nd ≥ n∗d > (1− ε)
qd

d
.

Choosing A ≤ (dε)(ε−1)/γ we can guarantee that the lower bound holds for n ≤ qdε . Hence we
may assume that n ≥ qdε + 1 ≥ dεndε + 3. Now we can repeat the proofs of Theorems 5.1 and
5.2, replacing the products

∏d∗

d=3, respectively
∏d∗

d=5, by
∏d∗

d=dε
. �

5.4. Proof of Theorem 1.4

To guarantee the lower bound in the case ` = p we can take C ≤ 1, since the Steinberg
character, being of p-defect 0, is irreducible modulo p. Assume that ` 6= p. As usual, by choosing
C small enough we can ignore any finite number of simple groups; also, it suffices to prove the
lower bound for the unique non-abelian composition factor S of G. So we will work with S =
G/Z(G), where G is a simple simply connected algebraic group andG = GF is the corresponding
finite group over Fq. Consider the pair (G∗, F ∗) dual to (G, F ) and the dual group G∗ := (G∗)F∗

.
It is well known that, for q ≥ 5, IBr`(PSL2(q)) contains a character of degree ≥ q − 1, so we
may assume that r := rank(G) > 1. We will show that, with a finite number of exceptions,
[G∗, G∗] contains a regular semisimple `′-element s with connected centralizer and such that
CG∗(s) is a torus of order at most 2qr. For such an s, the corresponding semisimple character
χ = χs can be viewed as an irreducible character of S of degree |G|p′/|CG∗(s)| > C · |G|p (with
C > 0 suitably chosen). Moreover, any Brauer character in the `-block of G containing χ has
degree divisible by χ(1) as a consequence of a result of Broué–Michel, see [11, Prop. 1]. Hence
the reduction modulo ` of χ is irreducible and so b`(S) ≥ χ(1).

To find such an s, we will work with two specific tori T1 and T2 of G∗. For G = 3D4(q) we
can choose |T1| = q4 − q2 + 1 and |T2| = (q2 − q + 1)2. For G = SUn(q), we choose

(|T1|, |T2|) =


(

(qn/2+1)2

q+1 , qn−1 + 1
)

if n ≡ 2 (mod 4),(
qn+1
q+1 , (q

(n−1)/2 + 1)2
)

if n ≡ 3 (mod 4).

If G is of type Bn or Cn with 2|n, we can choose

(|T1|, |T2|) = (qn + 1, (qn/2 + 1)2).

For all other G, T1 and T2 can be chosen of order indicated in [19, Tables 3.5 and 4.2]. We
may assume that either q or the rank of G is sufficiently large, so in particular Zsigmondy
primes ri [29] exist for the cyclotomic polynomials Φmi

(in q) of largest possible mi dividing
the orders |Ti|. Here i = 1, 2, and, furthermore, for i = 2 we need to assume that G is not
SL3(q), SU3(q), or Sp4(q) ∼= Spin5(q). According to [6], either r2 > m2 + 1 or r22 divides Φm2 ,
again with finitely many exceptions.

Now if r1 6= `, respectively if ` = r1 6= r2 and r2 is larger than all torsion primes of G
(see e.g. [20, Table 2.3] for the list of them), we can choose s ∈ Ti of prime order ri, with
i = 1, respectively i = 2, and observe that ri is coprime to all torsion primes of G as well
as to |G∗/[G∗, G∗]|. It follows that CG∗(s) is connected (cf. [20, Prop. 14.20] for instance),



LARGEST REPRESENTATIONS OF SIMPLE GROUPS Page 31 of 32

s ∈ [G∗, G∗], and moreover s can be chosen so that |CG∗(s)| = |Ti|. Thus s has the desired
properties, and so we are done.

We observe that r2 can be a torsion prime for G only when r2 = m2 + 1 and (G, r2) is
(SLn(q), n), or (SUn(q), n) with n ≡ 3 (mod 4). In either case we can choose s ∈ T2 ∩ [G∗, G∗]
of order r22. Furthermore, if G = SLε

3(q) with q ≥ 5, we fix α ∈ F×q2 of order q + ε and choose
s ∈ T2 with an inverse image diag(α, α−1, 1) in G. If G = Sp4(q) with q ≥ 8, we fix β ∈ F×q2

of order q + 1 and choose s ∈ T2 with an inverse image diag(β, β−1, β2, β−2) in Sp4(Fq) ∼=
Spin5(Fq). It remains to show that in these cases the element s has the desired properties. In
fact, it suffices to show that CG∗(s) is a torus. Consider, for instance, the case G = SLn(q) (so
r2 = n). Then s can be chosen to have an inverse image diag(γ, γq, . . . , γqn−2

, 1) in the simply
connected group Ĝ∗, where |γ| = n2 and G∗ = Ĝ∗/Z(Ĝ∗). Suppose x ∈ Ĝ∗ centralizes g modulo
Z(Ĝ∗). Then xgx−1 = δg for some δ ∈ F×q with δn = 1. It follows that δ is an eigenvalue of g of
order dividing n, and so δ = 1. Thus CG∗(s) equals CĜ∗(s)/Z(Ĝ∗) and so it is a torus. Similar
arguments apply to all the remaining cases. �
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