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Introduction

The inverse problem of Galois theory is concerned with the question whether
every finite group occurs as a Galois group over the rationals @ or, more generally,
over at most abelian extension fields of @. An important step towards the solution
seems to be the realization of all simple groups as Galois groups over such fields. The
inverse problem for arbitrary finite groups then reduces to solving embedding problems
for Galois extensions. The main source of Galois realizations for finite groups (with
trivial center) as Galois groups over the maximal abelian extension field @ of @ is the
sufficient rationality criterion proved in different generalizations by Belyi [3], Matzat
[33], and Thompson [43]: Let G be a finite group with trivial center having a class
structure € =(C,, C,, C3) which contains just one generating system of elements modulo
conjugation. Then G occurs as a Galois group over a suitable abelian number field. (For
notation, see the first paragraph.)

This criterion reduces the inverse problem for simple groups to purely group
theoretical calculations. It could be shown to hold for the alternating groups A4, [33],
the classical simple groups of Lie type [3], [4], and the sporadic simple groups (see [21]
and [37] for references). According to the classification of finite simple groups, which
was completed in 1980, only the exceptional groups of Lie type remain to be considered,
that is, the ten families G,, F,, Eq, E,, Eg, ?B,, *G,, ®*D,, ?F, and ?E,. The only known
results for these groups were obtained by Thompson. He showed that G, (p) occurs as a
Galois group over the rationals for all primes p [44] (see also [19]). Here we prove:

Main Theorem. The following exceptional simple groups of Lie type occur as
Galois groups over Q®:

(1) the Ree groups %G,(q), q=3>""1,
(2) the groups G,(q) for all q,
(3) the Steinberg triality groups *D,(q) for all gq,
(4) the groups F,(q) in odd characteristic p>2,

(5) the groups E¢(q) for g=p"=—1(mod3) and p=5,
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(6) the groups *E¢(q) for g=p"=1 (mod 3) and large enough p and q,
(7) the groups E,(q) in characteristic p= 5,
(8) the groups Eg(q) in characteristic p=7.

Moreover, the groups F,(p) for primes p=2, 6,7, 11 (mod 13), p =19, and the groups
Eg(p) for primes p=3, 7, 9, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 24, 28 (mod 31),
p>127, occur as Galois groups over the rationals Q.

The proof will be given in §§ 2—10. There also Galois realizations for the three
groups Sz(8), *F,(2)’ and F,(2) are determined.

By the definition in [34] of GAR-realization, a Galois realization of a simple
group with trivial outer automorphism group is a GAR-realization over the same field
of definition. Thus the Main Theorem implies:

Corollary. The following exceptional simple groups of Lie type possess GAR-
realizations (in the terminology of [34]) over @®:

(1) the groups G,(p) for all primes p=5,
(2) the groups F,(p) for all primes p=3,
(3) the groups Eg4(p) for all primes p=1.

Moreover, the groups F,(p) for primes p=2,6,7, 11 (mod13), p=19, and the
groups Eg(p) for primes p=3, 7, 9, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 24,
28 (mod 31), p> 127, possess GAR-realizations over the rationals Q.

The verification of the rationality criterion for the classical groups was accom-
plished by Belyi with the help of a lemma using the standard matrix representation of
these groups. An application to the exceptional groups of Lie type fails, as they do not
have elements of the form required in the lemma of Belyi. On the other hand, a
calculation with generators and relations, as it can be carried through for the alternating
groups A,, is only feasable for untwisted groups of small rank, namely for the family
G,. For these groups, the method was successfully applied in [44] and [31]. For
“larger” groups the necessary calculations become too long and complicated.

As a third possibility of verifying the criterion, the class number of € may be
obtained as a multiplication constant from the character table of G. This method was
used to handle the sporadic simple groups. The generation of G by a triple of elements
from € remains to be proved independently, though.

For the families G,, *G, and 3D, the character table is known, making the first
step trivial after a suitable choice of the class structure. For the other families, one of
the classes C is chosen so that its elements generate t.i.-Hall subgroups of G. The
irreducible characters of G not vanishing on this class are then described by Feit’s
theory of exceptional characters; the values on the other classes can often be deduced
from the (deep) theory of unipotent characters of groups of Lie type by Deligne and
Lusztig [13], [29], [30]. For most of the families we can choose a class structure such
that its normalized structure constant n(€) is equal to one.

The proof of generation again uses the special form of the class C. Only “few”
subgroups of G can contain t.i.-Hall subgroups. In fact, apart from local subgroups,
only almost simple groups can arise as possible subgroups generated by a triple of
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elements from €. With the classification of finite simple groups, which enters at this
point, and the knowledge of the minimal degrees of projective modular representations
of the groups of Lie type [26], in our case only the simple groups defined in the same
characteristic as G remain. This last case, and so the proof of generation, is now
completed with the help of divisibility criteria for the group orders. In some instances,
more precise reasoning is necessary (for example for the inclusions %4,(q?), 3D, (q) < F4(q)
in Paragraph 5).

For groups F,(p) and Eg(p) and for certain congruences of the prime p, a choice
of a rational class structure is possible. This leads to Galois realizations of those groups
over the rationals @.

The families of exceptional groups of Lie type will be treated case by case from
Paragraph 2 on. The necessary lemmas are collected in the first paragraph.

I would like to thank Professor B. H. Matzat for the supervision of my thesis
[31], which this work is part of. Further I thank Professor J. G. Thompson for helpful
comments and for making possible a one year stay at the Department of Pure
Mathematics in Cambridge, England. I had helpful and interesting conversations about
the groups of Lie type with Professor R. W. Carter, Dr. J. Saxl and Dr. P. Kleidman.
The computer calculations were done on the IBM 3081 of the Computing Service of the
University of Cambridge.

§ 1. Auxiliary results

In each of the following paragraphs a family of finite simple exceptional groups of
Lie type will be investigated for possible Galois realizations over abelian number fields.
In spite of the individual properties of the families, a reasonably unified approach is
possible, requiring a standard set of auxiliary lemmas. These are collected in the present
paragraph for better reference.

1. 1. The rationality criterion. The starting point for all the calculations in this
work is the rationality criterion already mentioned in the introduction. It gives a
sufficient group theoretic condition for a finite (simple) group G to occur as a Galois
group over an abelian number field, the latter depending on the group G. The efforts of
the other paragraphs aim at showing that the criterion is satisfied for some of the
exceptional groups of Lie type.

Central in constructive Galois theory is the notion of a class structure
€=(C,, Cy, C3), i.e. of a triple of conjugacy classes C; of the finite group G. The

corresponding ramification structure is defined by €*= () (Cj, C3, C3). Further let
w1G)h=1

2@ ={(g) e €| 6,0,0,=1}. The set 2(€)={(c) € £(€)| {0y, 0,, 063) =G} contains the
generating systems of G in €. The number of such generating systems modulo
conjugation in G, that is, the number |X(€)|/|Inn(G)|, will be denoted by I'(€). Finally,
to formulate the criterion, we need the irreducible (complex) characters y;, i=1,..., h
of G.

Rationality Criterion (Belyi, Matzat, Thompson). Let G be a finite group with
trivial center and € =(C,, C,, C5) a class structure of G with I'(€)=1. Then G occurs as
h

a Galois group over K=Q(|) x:(C)).
i=1
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Different generalizations of this theorem are proved in [3], [33] and [43]. As the
character values of finite groups are sums of roots of unity, the field K is always an
abelian number field. In particular if all three classes C; are rational, that is to say, if all
characters take rational values on each C;, or still equivalently, if elements of C; are
conjugate to all of their primitive powers, then G is a Galois group over the rational
numbers @.

In general, it is highly nontrivial to calculate I'(€) for an arbitrary class structure
€ of some finite group. But an estimate giving an upper limit for I'(€) can be obtained
from the character table of G. By fundamental character theory, the multiplication
constant of €, that is, the number |{(s,, 6,) € (Cy, C,) | 6,0, =03"}| for a fixed 05 € C; is
equal to

|G b xi(oy) xi(03) xi(as)
m(€) = . .
€6 ()] - 166(a2)] =3 %i(1)
But X2(€) only contains the triples generating all of G, so |Z(€)|Z|C;| - m(€) and
consequently [(€) <m(€)/|%;(c;)|=:n(€). With this, the rationality criterion can be
reformulated in the form which will be useful to us later on:

Lemma 1. 1. Let € be a class structure of the group G with trivial center. If we
have

|G| ' Z xi(oy) x:i(03) Xi(o's): 1, o.eC,

A P A A A AT R o

and no triple (o) € £(€) can generate a proper subgroup of G, then G occurs as a Galois
h

group for the ramification structure €* over @ () x:(g))).
i=1

Proof (see also [32] or [43]). By the above considerations we already have
I'(€) < n(€)=1. Because n(€) +0 there are triples (g) in € which generate all of G. This
shows [/(€) =1 and the lemma now follows from the rationality criterion. W

1. 2. Groups with cyclic t.i.-Hall subgroups. To be able to calculate the normalized
structure constant introduced in the previous section for a class structure of one of the
groups of Lie type, it will be important to find a class C of G such that only “few”
characters do not vanish on that class. All exceptional groups of Lie type contain large
cyclic t.i.-Hall subgroups (trivial intersection), and it turns out that classes of elements
from these subgroups have the desired property. Namely the characters not vanishing
on such elements are rather easily described by results of Feit. But moreover only few
maximal subgroups of G can contain these large cyclic t.i.-groups, so that the question
of generation is considerably simplified. In what follows, the two assertions are made
precise.

Let T <G be a cyclic Hall subgroup of the group G with the additional property

(*) Gs(T)=%(t) forall reT*.

42 Journal fiir Mathematik. Band 392
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This last property is not so hard to verify in the cases of interest to us because T will
always be contained in a maximal torus, so all its elements will be semisimple (see
Section 1. 4). For these, the centralizer orders in G are known, which will make possible
the proof of ().

Under the assumptions made, T has already the t.i.-property. Namely, for x € G
with Tn T*=R>{i} we have T*<%;(R)=%4(T), and (T, T*) is an abelian n-Hall
subgroup for the same = as T, so necessarily must be equal to T, which proves T =T~
as required.

The t.i.-property greatly restricts the possible types of subgroups of G con-
taining T:

Lemma 1.2. Let T be a cyclic Hall subgroup of G with (x). Then any subgroup
H < G with T<H has one of the following structures:

(1) Hz=AH(T), or

(2) H=ANG(Z)), (r,|T))=1 and there exists pu<v with |T||(@*—1) and
2y "2 €6(T), or

(3) R=ZHZ=ZA;(R), R a nonabelian simple subgroup of G, or
(4) there exists a nonabelian simple R < %;(T), or

(5) there exist two primes p | |G| with p-rank(G)=|T|, or

(6) there is a nonabelian simple R <G with |T|||Out(R)|.

Proof. A minimal normal subgroup M of H must form a direct product
R, x --- x R, of isomorphic simple groups R;=~R. If M n T # {1} then we must have s=1
because T < H is a cyclic Hall subgroup. In the case of abelian R=M = Z,, the prime r
divides the order of T, and consequently M <T For xe Az(M) we have
TnT*2M > {1}, and because of the t.i.-property proved above, we get x € A;(T). This
forces H < N5(M) < A5(T), leading to (1).

In the case of M =R nonabelian, we arrive directly at (3).

So we can now assume M N T = {i}. First consider the case of elementary abelian
M. Under the operation of T, this splits into M =%,,(T) x S, with T acting fixed point
freely on S. This follows from the property (x), because if x ¢ €, (T) then we already
have %;(x) n T={1}. The fixed point free operation on S forces |T||(|S|—1), and this
gives (2).

Finally let M=R, x---x R;, R;=~R nonabelian simple and Tn M ={1}. In the
semidirect product N:=M xT, the cyclic group T now acts on the set {Ry,..., R}.
Denote by S the normalizer A% (R;)=Fixy(R;) of R; in N. If Sn T = {1}, then T acts
faithfully as a |T|-cycle on {R} |t € T}, and we have s=|T|. Nonabelian simple groups
are not p-groups, so at least two different primes divide the order of R, and case (5)
results. If on the other hand S~ T> {1}, then by Thompson’s nilpotency criterion [42]
there must exist a t € SN T* with C:=%s(t) n R, > {1}. With (*) we conclude T < %y(C)
and so T<S. The fourth case occurs for C=R;, while otherwise T n%;(R,)= {1},
yielding (6). W
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It is indeed easy to give examples for all six cases of the lemma. In particular, the
assumptions are satisfied for any group G having a Sylow subgroup T of prime order.
So without further conditions, no stronger result can be expected. But in most of the
applications, €;(T) is a cyclic t.i.-Hall subgroup itself, restricting the structure of H still
further:

Lemma 1.3. Let T be abelian, 6;(T) a cyclic Hall subgroup of G with (x). Then a
subgroup H of G containing T has the structure

(1) H=AH6(T), or
(2) HZN(Z)) with |T||(r*—1), i.e. T acts fixed point freely on Z), or
(3) R=HZ=Aut(R), R a nonabelian simple subgroup of G.

Proof. Observe that T is not supposed to be a Hall subgroup itself. So Lemma
1.2 can not be applied immediately. But the arguments are quite similar to the
preceding proof. Let M =R, x--- xR, be a minimal normal subgroup of H. If M is
abelian, then either €;(T) N M > {1}, which means |R|=r | |6;(T)|, whence s=1 (€;(T)
is a cyclic Hall subgroup). This is case (1) of Lemma 1.2 (for €,;(T)), yielding (1).

On the other hand if ;(T)n" M ={i}, T acts fixed point freely on M, as in (2) of
the lemma.

Now suppose R is nonabelian simple. If €;(T)n M > {1}, then again s=1 (i.e.
M =R), and T < 4;(R). But €;(R) centralizes the intersection of R and %;(T). Because
of (%) for €;(T) this forces ¥;(R)<%;(T). But no nonidentity element of €;(T) can
centralize R, again due to (x). Thus €;(R)= {1}, and AG(R) < Aut(R) as in (3).

If finally €;(T) M = {1}, then T would act fixed point freely on M, which is
impossible. W

Corresponding to the simple structure of overgroups of T in G is a simple
behaviour of the irreducible characters of G on T. Feit proved in 1960 that apart from a
family of so called exceptional characters A; all other irreducible characters are constant
on T*. Moreover, Dade showed that the non exceptional characters take only values
—1,0 or 1 on T*, a result which we will not need here, because it will follow from
other facts. The exact formulation of Feit’s result is

Lemma 1. 4 (Feit). Let T be an abelian t.i.-subgroup of G, with the normalizer
N:=ANg(T) a Frobenius group with kernel T. Further, assume s:=(T|—1)/(N:T)=2.
Then there exist s distinct irreducible characters A, ..., A of G, a sign 6 and an integer a
such that

(1) the generalized character

SAi+a- Y A+ Y x(T*)y

i=1 x¥A4;

vanishes outside | ) (T*)’ for all i=1,....s.
geG

(2) Ay, ..., A, are all irreducible characters of G not constant on T*.

(B) b+a?+(s—1)-a>+ Y [x(THP=(N:T)+1.

I*Aj
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See [22], XI, Theorem 4. 6, for a proof.

1. 3. Divisibility criteria. To realize a group G as Galois group with Lemma 1. 1,
the subgroup generated by a triple (g) € £(€) must be shown to be equal to G. Apart
from Lemma 1.2, which gives restrictions on the possible structure of the generated
group, information is needed as to which simple groups can be contained in G. Many
inclusions can be ruled out with the theorem of Lagrange, that is to say with divisibility
criteria for group orders. Now the orders of the finite groups of Lie type in
characteristic p are products of factors of the form p*+ 1 with a power p* (except for the
case 3D,, which can be treated similarly). Factors of that type tend to have “large”
prime divisors. The main result regarding this was shown already in 1892 by Zsigmondy
[46]: For all positive integers v=3 and all primes p there exists a primitive prime
divisor r of p*—1, dividing none of the p*—1, u<v, except for the case v=6, p=2. If
we denote by @,(X) the n-th cyclotomic polynomial, we can conclude:

Lemma 1.5. If &,(p*) with nv>3 divides the product []| (p"i—1), then there
i=1
exists an index i with nv|y; or we have p=2, nv==6.

Proof. Let r be the primitive divisor of p" —1 according to the result of
nv—1

Zsigmondy. Because of (p™—1)| &,(p*)- [[ (»*—1), r must divide already &,(p*). By

n=1
Zsigmondy there exists an i with nv < ;. But ged (p™ —1, p* —1) = p¢™ ¥ 1, 50 r can
only divide p*—1 if p is a multiple of nv. The exception mentioned can occur only for
p=2, nv==6. B

Another criterion to identify the group generated by three elements o, 0,, o; with
0,0,03 =1 makes use of the orders o(g;) of the three elements:

Lemma 1.6. Let H:={o0,, 0,) with g,0,05=1 and gcd(o(c;), 0(0)))=1 for i=}j.
Then H is a perfect group, that is, H=H'.

A proof for this well known result can be found in [43].

1.4. Local subgroups of simple groups of Lie type. Apart from almost simple
groups, local subgroups are mentioned as possible overgroups of t.i.-Hall subgroups in
Lemma 1. 3. It therefore seems necessary to shed some light on the structure of local
subgroups and Sylow subgroups of simple groups of Lie type. In particular those
elementary abelian subgroups admitting a fixed point free operation by a “large” cyclic
group (see Lemma 1. 3(2)) must be studied. The main reference for the results cited in
this section is the article of Springer and Steinberg in [6], part E.

Let G be a connected reductive algebraic group over the algebraic closure of the
finite field /, with a Frobenius map F : G — G. The fixed points in G under F then form
a finite group G*, and all finite simple groups of Lie type occur as the nonabelian
composition factors of such G*.

Elements of p-power order in G¥ are called unipotent, while p-regular elements are
called semisimple. A maximal abelian subgroup T of G containing only semisimple
elements is called a maximal torus. The maximal tori T of G fixed by F can be classified
([6], part G). Namely these classes of maximal tori are in bijective correspondence with
the F-conjugacy classes of the Weyl group W of G; for trivial action of F on W, that is,
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for untwisted G*, these are just the usual conjugacy classes of W. Similarly the maximal
tori TF of G* are the groups of fixed points under F of the F-stable tori T of G. If TF
belongs to the F-class [w], then A (T,)"/TE =%y (w) ([8], Propositions 3.3.3—3.3.6).

For the different types of groups, sets of torsion primes can be defined; these are
for the type G,: 2, for the types F,, E¢, E,: 2 and 3, and for the type Eq: 2,3 and 5.
With these, the following statements about the structure of local subgroups of the
groups G hold true:

Lemma 1.7. (1) The normalizer of a unipotent subgroup U < G¥ is contained in a
maximal parabolic subgroup of GF.

(2) A direct product E:=Y; x---x Y, of cyclic semisimple subgroups Y; of G can
be embedded into a maximal torus T* of G¥, if the number of |Y)| not prime to all torsion
primes of G is at most two. In particular, we then have Ng(E)/%s(E) < W(G).

(3) A Sylow r-subgroup for r prime to the characteristic and the order of the Weyl
group can be embedded into a maximal torus TF of GF; in particular, it is abelian.

Proof. Part (1) is the well known theorem of Borel and Tits [7], Prop. 3. 12.
Theorem 5. 8(c) in [6], E2, shows the first half of part (2). The second assertion follows
from the uniqueness of the Bruhat decomposition of elements of G, as is shown in the
proof of Proposition 3.7.1 in [8] for example. Part (3) finally is Corollary 5.19(b) in
[6], E2. W

The parabolic subgroups of the finite groups of Lie type are explicitly known,
their orders can be calculated easily ([8], p. 43 and p. 63).

1. 5. Characters of simple groups of Lie type. Even when using Feits theory of
exceptional characters, not all character values necessary for the calculation of a
structure constant can be determined. Additional information about the values of the
unipotent characters of the groups of Lie type on semisimple or unipotent classes are
needed. The theory of unipotent characters was established by Deligne and Lusztig in
[13], [28], [29], [30] and gives explicit algorithms to calculate the values of any
irreducible character at any semisimple class of exceptional groups of Lie type.
Moreover in good characteristic, the values of unipotent characters on some unipotent
classes can be effectively computed, with the help of tables of the values of Green
functions compiled by Shoji [39] and Beynon and Spaltenstein [5]. The main reference
for the first part of the theory is the excellent book of Carter [8]. Some of the newer
results are not contained in it; they can be found in the original papers or the book
[29] of Lusztig.

The main tool in the character theory of the groups G* are the characters Ry,
which were constructed in the fundamental paper [13] of Deligne and Lusztig. For
every maximal torus T fixed under F and every irreducible (i.e. linear) character 0 of T*
a generalized character Ry, of G* can be defined. On these characters, the equivalence
relation of geometric conjugacy is introduced, with the property that two characters
Rrg, Ry e have an irreducible component in common only if (7, 0) and (T, ) are
geometric conjugate ([8], Theorem 7. 3.8). The irreducible constituents of Ry ; (with 1
the trivial character of the torus TF) are called unipotent characters. In Lusztig’s
classification of the irreducible characters of the groups G* they play a role similar to
the one of the unipotent classes in the classification of all conjugacy classes of G
(Jordan decomposition). The generalized characters Rp,, restricted on a maximal

43 Journal fiir Mathematik. Band 392
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unipotent subgroup UF of G¥ (i.e. a p-Sylow subgroup), are the Green functions of GF.
The decomposition of the Ry ; into their unipotent components was determined by
Lusztig [28].

The main result about the values of the characters of G' at semisimple classes was
proved in 1976 in [13], Corollary 7.6. It makes use of the representability of the
characteristic function of a semisimple class [s] as a linear combination of Ry ¢'s with
known coefficients. From this, the values of arbitrary characters on se G can be
determined. For a finite group H, let A denote the character group. For a subgroup D
of G, the connected component of the identity is D°. Further let ¢, be the sign defined in
[8], p.197, for a maximal torus T of G. Then &:=¢q(, is defined to be & for a
maximally split torus T of %g(s) ([8], p.199). Following [28] the formulae take a
simpler form if we replace the Ry, by generalized characters R, indexed by the
irreducible characters y of the Weyl group W of G:

Rx‘=|VV|_1 Z x(w)- Rrw,x-

weW

Lemma 1. 8 (Deligne, Lusztig). The value of the unipotent character ¢ of the group
GF on the semisimple element s e G¥ is given by

0= 1617 Y (@ R): Y er,x(w).

xeW Tw:seTy,

Here x runs over all irreducible characters of W and T over all tori TE of G¥ containing s.

The multiplicities (¢, R,) are described in [28], Theorem 1. 5, and tables of these
numbers can be found in [8], 13.6.

To effectively calculate ) &r x(w), which runs over all tori T* of G¥ containing s,

T

the fact is used that all these T* lie in €¢(s)F ([8], Prop. 3.5.2). By [8], Theorem 3.5. 4,
%e(s) is a reductive algebraic group itself. So the maximal tori TF 55 of GF are exactly
the maximal tori TF of %2(s)f. The structure of g(s)f is known for all semisimple
s € GT of exceptional simple groups G¥ of Lie type [35], [14], [15]. The maximal tori of
untwisted reductive groups were given by Carter in [6], part G. Let C:=%g(s)", then the
C-class [ T[] contains exactly |C|/|4¢(TF)| different maximal tori conjugate to T. If we
denote the Weyl group of C by W,, then we therefore have

AT =ITF| - (A(TF): TF) =|TF| - |Gy, (W)l
and the formula of Lemma 1. 8 becomes

e , L
e(s) =& 1€6(s)" 1§W (e, Ry) [w]éWo or. ITF| - |€w,(W)|

Now only the fusion of W, into W has to be known to effectively compute the sum in
Lemma 1. 8 for all unipotent characters ¢ of GF.
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The theory of the values of irreducible characters on unipotent classes is not yet
complete. In principal, one has to know the values of the Green functions on the
unipotent classes and the decomposition of the Ry , into irreducible characters of G*. In
addition, some so called uniform functions on the unipotent classes have to be found. At
the moment the Green functions of exceptional groups of Lie type are known only for
good primes p ([30], [23], [39], [5]). With these the values of unipotent characters on
some unipotent classes [u] of GF can be calculated. The main result here is Theorem
1.5 in [28] (see also Corollary 4. 25 in [29]).

§ 2. The groups %G, (q) as Galois groups over @“®

The simple Ree groups %G, (32"*!) are an easy test case for the criteria presented
in the first paragraph. A large part of their character table was determined by Ward
[45], as well as the local subgroups of these groups. Recently, Kleidman obtained a
complete list of maximal subgroups [25]. Using this, the proof of rigidity is rather easy.
It should however be noted that even without the knowledge of the maximal subgroups
the desired result can be shown [31].

To define a class structure of G:=2G,(3*"*') let C, be the unique class of

involutions, C; the class of 3-elements which are central in a Sylow 3-subgroup (this
class is denoted by [X] in [45]), and let C,,,,, be classes of elements of orders
q+r+1, with r:=3"*1,
Theorem 2. 1. The groups 2G,(q), g=23?"*, n=1, occur as Galois groups over Q@
for the ramification structures €Ff =(C,, C3, Cyy,q)* and €3 =(C,, C;,C,_,)* 4
proper field of definition K= (q) has index six in the field Qy+r+1) of (@ r+1)-th roots
of unity.

Proof. From the character table in [45], the normalized structure constants are
calculated by Lemma 1.1 as

_ (@+D)e*@-) . (@—1)Bg—n2 \ _
n(E‘)_q(qz—l)q3(q+r+1) <1+24(q—1)r(q—r+1))_1
and
n(€,) = (@+1)q*@-1) ( ., @g—=1)Bq+n2 )=
¥ @ -)gg-r+1) 4(g—Dr(@+r+1)

Now by the criterion in Lemma 1. 1 we have to show that any triple in £(€;) generates
G. Then the assertion about the exact field of definition can be read off from the
character table in [45] (i.e. from the fact that C, and C, are rational classes, while
elements in C,,,., are conjugate to six of their primitive powers). So let H:= (s, 0;)
for (g) € Z£(€). By comparing with the list of maximal subgroups in [25] we find that
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either H is contained in the normalizer of the cyclic group generated by g, or we have
H =G. But the orders of 6,0, and o, are pairwise prime, so H is nonsolvable by
Lemma 1. 6. This excludes the first possibility and therefore H=G. W

By a suitable change of the non rational class, a smaller field of definition may be
obtained in some cases:

Proposition 2. 1. Let s be a primitive prime divisor of q*> —q+1 in the notation of
Lemma 1.5. Then 2*G,(q) is a Galois group for the ramification structure
C* =(C,, C5, C,)* over a field of index six in Q((,).

Proof. Because of g>—q+1=(q+r+1)-(q—r+1) exactly one of the two factors
is divisible by s. The character table in [45] shows n(€*)=1 in this case as well. The
group generated by a triple (g) € £(€) is nonsolvable, and due to the choice of s, only
H =G remains from the list in [25]. The proposition now follows by Lemma 1.1 and
the remark above about the structure of the normalizer of an element of order s. |

The group I'L,(8)=2G,(3) was already shown in [33] to occur as Galois group
over @, so all groups 2G,(q) are Galois groups over cyclotomic fields.

§ 3. The groups G, (q) as Galois groups over @°

Being the smallest untwisted exceptional groups of Lie type, the groups G,(q) are
well suited for an application of the criteria for Galois realization mentioned in the
introduction. Due to the transparent structure of these groups, much is known about
them. The conjugacy classes were determined by Chang [9] and Enomoto [17], and in
odd characteristic, the character table is known by work of Chang and Ree [10] and
Enomoto [18]. In even characteristic, the Deligne-Lusztig theory will be invoked to get
enough information about the irreducible characters. It is even possible to do explicit
calculations with generators and relations to prove rigidity for a given class structure of
G. This was first demonstrated by Thompson in [44] for the groups G,(p), p= 5, which
were shown to be rationally rigid. The results of Thompson were subsequently reproved
by Feit and Fong with the help of character theory and the classification of the finite
simple groups [19]. The author generalized Thompson’s method to arbitrary prime
powers g=p", p=5, in [31], to get these groups as Galois groups over Q.

3. 1. The case p odd. The cases of odd p can be treated in a more or less uniform
way, while in even characteristic a different approach will be needed because the
character table of G,(2") is not known. So in this section, let G:=G,(p"), p+2. A
complete list of maximal subgroups of G,(q) was recently obtained by Kleidman [25]. It
will be used here to shorten the proof. But our results can be obtained independently of

[25] (see [31]).

Now define class structures of G. First let p=5. Then the first class will contain
semisimple elements of order three, namely C;:=[k;] in the notation of [10]. Let the
second class be C,,:=[k, ;]. The third class will contain elements generating a t.i.-Hall
subgroup, namely C*:=[hg], C™:=[h;]. (Two different cases have to be distinguished
according to g=1 or g= —1 (mod 3).)
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Theorem 3. 1. The groups G,(q), g=p"=¢(mod3), p=5, occur as Galois groups
over @ for the ramification structure € =(Cj, C;,, C)* (the corresponding classes
containing elements of orders (3,2p, g* —eq+1)). More precisely a proper field of
definition K,(q) has index six in the abelian field Q (- og+1)-

Proof. The formula in Lemma 1.1 for n(€) requires the knowledge of those
irreducible complex characters of G not vanishing on all three classes of €. In
characteristic p= 5, these can be found in [10], p. 409—411:

I {1} Cs Cap c*
X11 1 1 1 1
1 1 1
X16 gq¢§(b3 §¢2¢3 5‘1’2 -1
for g=1 (mod 3),
’ {1} Cs Cap c-
Y11 1 1 1 1
1 1 1
X18 E‘I‘p%‘p6 §¢1¢6 E(Dl 1

for g= —1 (mod 3) respectively. With |G| =¢°%(g>—1) (g®—1), |%;(0) =q3(q*> —1) (g® —¢),
|6 (o) = q*(q* —1), |65(1,)| =q*—¢eq +1 for a triple (g, 0, 1) € £(€,) one gets n(€,) =1 in
both cases.

Now let H:= (g, ) for such a triple (g, g, 7). As the orders of the three generators
are pairwise prime, H is nonsolvable and perfect by Lemma 1. 6. Checking the list of
maximal subgroups in [25] with the help of the divisibility criterion of Lemma 1. 5, one
is left with the possibility H=L;(q) or U;(q). In a first case let o(r)=gq>—q+1, that is,
q=1 (mod 3). Then the order of T does not divide the order of L;(g). If H+ G then by
the above H = U,(q). This group has unique classes of elements or order three, and of
unipotent elements with even centralizer order. These would have to fuse to the classes
C; and C,:=(C,,)* of G. But the structure constant n(C;, C,, [t])y =1 by [40], while
n(Cs, C3,, [1])6,=0 from [10]. This proves H=G,(q) if g=1(mod3). The case
o(t)=q*+q+1, leading to the possibility H = L;(q), is treated exactly the same way.
The theorem now follows with Lemma 1.1. W

In characteristic three, a slightly different class structure will be considered.
Namely there are no semisimple elements of order three in this case. So the first class
C;:=A, in the notation of [18] will contain the unipotent elements central in a Sylow
3-subgroup. Let the second class be Cg:=Bj (still in the notation of [18]). As the third
class we can take either C*:=E; or C™:=Eq.
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Theorem 3. 2. The groups G,(q), q=3", n=2, occur as Galois groups over Q@ for
the two ramification structures GF =(C;, Cq, C°)*, €= +1, the corresponding classes
containing elements of orders (3, 6, g* —eq + 1). More precisely a proper field of definition
K,(q) has index six in the abelian field Q((,2 - .q+1)-

Proof. The characters not vanishing on all three classes are read of from [18],
p. 240—247:

t} Cs Cs ct o
9, 1 1 1 1 1
0, %q¢%¢3 éq¢2(2q+1) %¢2 —1
0, %qq)gcpﬁ %quz %«pz - 1
ho | a0 cadiCa-D) oo 1
0, %q(bfd% —%qtb, %d)l 1

As we have |%5(0)l=¢°(q*>—1), |65(0)l=4%(g*—1), |65(z)|=q*—eq+1 for a triple
(0,0, 7)€ £(€,), n(€,)=1 follows in both cases.

Again by the results of Kleidman [25], either H is contained in the normalizer of
the cyclic group generated by 7, or it is one of L;(q), U,(q) or G,(q). But the solvable
normalizer of {t) cannot possess two elements of orders three and six with their
product being 7. This becomes obvious by looking at the cyclic group of order six
obtained by factoring out {(r). Now assume ¢=1. Then H is either U;(q) or G. The
group U,(g) contains two classes of elements of order three, one of which has even
centralizer order. This one has to fuse in Cj:=C? of G. In G, the classes C; and C} are
different, so C; has to correspond to the other class of 3-elements of Uj;(g). But
for this fusion we get n(C;, C5,C*)y=q*>+q—1 (see [40]), in contradiction to
n(Cs, C;, C*)g=0. This leaves only H=G. The case ¢=—1 with the possibility
H = L,(q) is treated analogously. The theorem now follows from Lemma 1.1. W

The remaining group in odd characteristic, G = G,(3), behaves a bit exceptional
and will be considered in the next section.

3. 2. Construction of exceptional characters. Contrary to the situation in odd
characteristic, the character table of G,(2") is not published. So we will have to apply
the previously described theory of exceptional characters to deduce a large enough
portion of the character table of the groups G:=G,(2"). Using results of Deligne and
Lusztig about character values at semisimple elements, a structure constant can be
calculated. For the proof of generation, we can make use of the list of maximal
subgroups of G given by Cooperstein [12]. (But obviously, the method applied in the
cases where the maximal subgroups are not known would suffice to complete the proof.
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The result of Cooperstein is just used to shorten the argument.) As before, a suitable
t.i.-subgroup of G is generated by elements of order g>—eq+1, g=¢ (mod3). The
conjugacy classes of the class structure are then chosen to be C;, containing elements g
of order three with |45 ()| = ¢>(¢> - 1) (¢* —¢), C,,,, containing elements ¢ of order q +¢
with |€;(0)l=q(q+¢) (g>—1) and finally C* a class of elements T generating a cyclic
Hall subgroup of order g> —¢q+1 (see [17], Table 1).

Proposition 3. 1. For €,=(C;, C,4,, C°) of G,(q), g=2"=¢e(mod3), n=2, we
have n(€)=1.

Proof. First let gq=¢=1(mod3). The cyclic subgroups T of order g>—q+1
generated by elements from C* are Hall subgroups with the property (x) of Section 1.2,
as can be seen from the list of centralizer orders in [17], Table 1. In particular, they
form t.i.-sets with (A5 (T): T)=6. So the theory of exceptional characters in Lemma 1. 4
applies: There are s:=(q*—q)/6 irreducible characters A; of G not constant on T*.
Furthermore there exist é € {+ 1}, a € Z, such that

O+a?+—Da’+ 3 [x(THP=(A(T): T)+1,

X*A4;

2 a*—q 2 #12 _
(6+a) +< : —1>a + Y 1u(TH1*=T.

xFA;

As s=(q*—q)/6 =40 for ¢=16, we conclude a=0 if g+4. To identify the remaining
characters not vanishing on T*, we introduce the unipotent characters of G (see Section
1. 5). The degrees of these irreducible characters are known by the work of Lusztig [29],
p. 372 (or [8], p.478). There are exactly six of them with degree not divisible by
q*—q+1, these degrees being 1, q°, %(D% D, %ﬁ @, and two times %tbftbﬁ. From
the definition of these characters it is clear that they are constant on T*, so they can
not be exceptional characters for T. Consider an element 7' € T* of prime order. This
order then does not divide the degrees of the above six characters, which means that
they must take nonzero values on 7’. By the formulas above about the character values,
these are the only irreducibles apart from the exceptional characters not vanishing on 1".
The values of the six unipotent characters y; on T* can now be obtained from
x:(t)=x;(1) (modq?—q+1). Alternatively the formula of Deligne-Lusztig about the
values of unipotent characters on semisimple elements could be invoked.

The already mentioned result of Deligne-Lusztig also permits to calculate the
values of the unipotent characters on the semisimple classes C; and C,.,. Evaluating
the formula in Lemma 1.4 for 1 yields

6
—04;()= Z Xj(T#) Xj(l)'_‘ (1)% ¢% D,,
=1

J




84 Malle, Groups of Lie type

so A;(1)=®?P3P;. From vanishing theorems for characters of simple groups we get
A;(Cyy1) = 4;(C3)=0. This leads to the following part of the character table of G:

{1} C; Cot1 T*

11 1 1 1 1

X2 q° q —q 1
1 1

X3 E‘I‘p%‘pa §¢2‘D3 * —1
1 2

Xa 2 qo1 P, * 2 1
1 2 52 L,

Xs §q<p1¢>2 —E,"‘qujz : 1
1 2 452 1,

X6 5‘1‘151452 _§<p1¢2 : 1

A; PIP3 b, . . 7

Only the trivial and the Steinberg character take nonzero values on all three classes.
Together with the centralizer orders given above this shows n(€,)=1.

The considerations were not valid for g =4, but in that case the result is easily
deduced from the Atlas character table [11], p.98. If on the other hand we have
g=¢= —1 (mod 3), then the cyclic subgroups of order g>+q+1 form t.i.-sets with the
desired properties. In this case we arrive at unipotent characters y; of degrees

1, 4, %(D% D, %(P% &, and twice %(P% @2. The relevant part of the character table then
is:
{l} C3 Cq—- 1 T#
n 1 1 1 1
e q° -q° q 1
1 1
X3 6 qP1 P 3 D, P 1
1
X4 2 q 93P ) ?, —1
1 22 p2 1 2
Xs §q¢1¢2 _’3‘¢1¢2 ) -1
X 1 qoi 3 1L D, D3 . -1
6 3 1*2 3 12
Ai ¢% ¢§ ¢6 * ¢ ??

This proves n(C_)=1. N
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Theorem 3.3. The groups G,(q), q=2"=¢ (mod 3), n=2, occur as Galois groups
over @ for the ramification structure €* =(C,, Cyter C)* (the corresponding classes
containing elements of orders (3,q+¢, q* —eq+1)). More precisely a proper field of
definition K,(q) is the compositum of the maximal real subfield of Q((,..) with a field of
index six in @Q(2—pq+1)-

Proof. 1t remains to show that a triple (g, o, 1) € 2(€,) generates G:=G,(2"). So
let H=<p, 0y and assume first 2" =g=¢=1 (mod 3). A short look at the list of maximal
subgroups in [12] reveals that only groups U;(2")-2, and in case ¢ =4 an exceptional
L,(13), have order divisible by g> —q+ 1. The latter case can be excluded immediately
because the order g+ 1=35 of o does not divide the order of L,(13). If g, 6> £ U;(q) - 2,
then by Lemma 1.6 we even have H < U,(q). Therefore it suffices to show that no
element of C; can be contained in such a Uj(q). For this purpose, the normalized
structure constant n(C;, C;, C°) will be calculated in both groups. In U;(q) there exists
just one class of elements of order three, and from [40] we find
n(Cs, C;, C)y=q*+q+1. For G itself we get n(Cs, C3, C*)¢ =0 from the part of the
character table constructed in the proof of Proposition 3. 1. For ¢ =4 this can again be
seen from the character table of G,(4) in [11], p. 98. Consequently the original (g, g, 1)
can not be contained in Us(q) and the theorem follows in this case.

The same procedure applies if 2"=¢= —1 (mod 3), showing that {g, ¢) could only
lie in an L;(g). But again the comparison of the structure constants of (C5, C5, C%) in G
and L;(q) excludes that possibility. [l

The proof of Theorem 3. 3 remains valid if the class C,. . is replaced by any class
C of powers of elements of C,+. which have the same centralizer order. As already for
2G,(q), the class C°® could be replaced by any class of elements with order a primitive
divisor of gq*>—eq+1, without changing the rigidity, to obtain a smaller field of
definition for the Galois extensions.

Theorems 3. 1 to 3.3 give Galois realizations over @ for all groups of type G,

with the exception of
G,(2)= U;(3)- 2 and G,(3).

The last two groups are treated in the next theorem. The notation for the conjugacy
classes is taken from the Atlas [11].

Theorem 3.4. The group G,(2) occurs as a Galois group over @ for the
ramification structure €* =(2B, 4C, 12 A)*.

The group G,(3) occurs as a Galois group over @(\/1_5) Jor the ramification
structure €* =(3 A4, 6B, 13 A)*.

Proof. The group G,(2) has a primitive permutation representation of degree 28.
The conditions of the rationality criterion can therefore be verified directly by computer
calculations with this representation.

In the case of G,(3) one first determines n(34, 6B, 134)=1 from the character
table in [11], p. 60. Again by [11] the only maximal subgroups of G with order divisible
by thirteen are L,(13) and two classes of L;(3). But L,(13) does not intersect the class
34 of G. Furthermore the permutation characters of the two L;(3)’s vanish either on
3A4 or on 6B. Therefore the triples in €* generate all of G, and by Lemma 1.1 this
completes the proof of the second part of the theorem. W




86 Malle, Groups of Lie type

§ 4. The groups 3D, (q) as Galois groups over @*°

The character table [16], [41] and the maximal subgroups [24] of the Steinberg
triality groups 3D,(q), ¢ =p", are known. Using this information, the groups G:=3D,(q)
can be realized as Galois groups over suitable abelian extension fields of @. Denote the
conjugacy classes C of G by their representative elements ¢ given in [16] as C=[¢].

Theorem 4. 1. The groups 3D,(q), q=p", are Galois groups over @ for the
ramification structure C* =([u,], [us], [s,4])* (here the corresponding classes contain
elements of orders (p, p’, ¢* — q* +1)). A proper field of definition K(q) is a field of index
Jour in the abelian field Q({4e_g241)-

Proof. From [41] and [16] the only irreducible characters not vanishing on the
class [s,,] are the unipotent characters 1, g,,°D,[—1], St and the family y,, of
semisimple characters. The values on the three classes are:

{1} [u] [us] [514]
1 1 1 1 1
0 lq3(1§2<152 lq3¢ i) . —1
1 2 2 %P6 2 2Pe
3 1 352 32 1y
D,[—1] Eq D1 Py —5‘1 D, P, ‘ 1
St q12 . . 1
X1a 4>f<p§<p§<p§ -9, 0,9,9¢ 1 {_1}

Here {—1} in the last line signifies that the values on s, of the characters in the family
X14 add up to —1. This information is sufficient for the calculation of the structure
constant. (The values of the y,, on u; and us are obtained from the orthogonality of the
corresponding columns to the one for s, or alternatively from [41].)

With the centralizer orders
[66(uy) =q"2(q% —1), 1G6(us)l=4°% |%s(s10)l=q*—q*+1

and |G]=q"%(¢*—-1)(¢®*—1) (¢® + ¢* + 1) we now get n(€)=1.

By [24] the only maximal subgroups of G containing elements 7 of order dividing
q* —q* +1=®,,(q) are the normalizers 4 ({t)) of the cyclic groups generated by them
of order ®,,(q)-4. The elements u; and us are unipotent, so they have p-power order,
which proves generation in the case of odd g. In the case p=2 the element u, is an
involution while us has order 4. (This can be seen from the Chevalley commutator
formula.) But a Frobenius group of type @,,(q) -4 can not have a generating triple of
elements of orders (2,4, #,,(q)). Lemma 1.1 now yields I'(€)=1, and the assertion
about the field of definition can be read off from the character table [16]. W
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This can be strengthened to

Theorem 4. 2. Let s be a primitive divisor of q* —q*+1 in the notation of Lemma
1.5. Then °D,(q) is a Galois group for the ramification structure €* =([u,], [us], C,)*
over a field of index four in @Q((,).

§ 5. Groups F,(q) as Galois groups over Q@*°

In contrast to the situation for the groups treated until now, the maximal
subgroups of G:=F,(q) are not known. But actually, if we choose one class in the class
structure so that its elements generate a t.i.-Hall subgroup, less information is necessary
to prove generation. Indeed, in view of Lemma 1. 3, all what is needed is a survey of the
possible simple subgroups of G. This task is partly achieved in the following lemma:

Lemma 5. 1. A nonabelian simple subgroup of F,(p") is either a group of Lie type
in characteristic p or it belongs to the following exceptional set:

(1) L,(r™) with r™e {7, 8, 13, 16, 17, 19, 25, 27, 37, 49} or

() L3(3), L3(4), La(3), Ls(2), S4(3), S4(4), S6(2), S¢(3), U3(3), Us(4), Us(3), Us(2),
Us(2), 05 (2), G5(3), °D4(2), *Fa(2), Sz(8) or

(3) A, with 5<mZ11 or
(4) a sporadic simple group.

Proof. At this point of the argument, the classification of the finite simple groups
is needed. We will first assume that H is a group of Lie type in characteristic r % p. As
F,(q) has a projective modular representation of degree 26 over [F,, every finite simple
subgroup must also have a faithful representation of degree at most 26 in characteristic
p. In their paper [26], Landazuri and Seitz compiled a list of minimal degrees of
projective representations of groups of Lie type in the “wrong” characteristic. This was
achieved by looking at suitable p-subgroups of these groups. With the help of their
result, one is left with the cases H=L,(r™), r™ <53, the groups under (2) and the four
additional groups L(5), S4(5), S4(7), U;(5). The Weyl group of G has order |W|=2732
so by Lemma 1.7(3), for primes r ¢ {2, 3, p} dividing |G|, the Sylow r-groups of F,(q)
are abelian. The only Lie groups in characteristic r with abelian r-Sylows are those of
type L,(r™). This excludes the four cases L;(5), S4(5), S4(7), Us(5). The groups L, (r™)
contain a Frobenius group of order r™(r™ —1)/2. By Lemma 1. 7(2) this can only happen
in G if (rm—1) divides 2|W|, leading to the cases r™e {5, 7, 13, 17, 19, 25, 37, 49}.
Collecting the groups in characteristic 2 and 3 as well, we arrive at (1), (2) and (3) of the
lemma.

According to the classification, only the alternating groups remain to be
considered. But A4;, contains an 11-cycle, conjugate to five of its powers. By Lemma 1.7
this is only possible in F,(q) in characteristic 11, and because all 4,,, m=11, have 4;, as
a subgroup, the lemma is shown if p#11. In characteristic 11, look at the centralizer of
a 3-cycle in A4, < F,(11"). It contains an A,_;. On the other hand by [38], Table 8, the
centralizer of an element of order three in F,(q), (3, g)=1, is a group of Lie type B, C,
or A,-A,. All of these possess projective representations of degree at most seven over
F,. The smallest degree of such a representation of A4, over Fi;» has degree eight.
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Consequently the centralizer of an element of order three in F,(11") contains at most an
Ag, which proves m <11, and thus the lemma. (The idea for the last step was pointed
out to me by J. Saxl) W

The above results could be strengthened considerably with a bit more work,
(excluding, for example, most of the sporadic groups), but the actual formulation is
strong enough for our purposes.

5. 1. The general case. In [31], rigidity was shown for F,(q), ¢ odd, with a class
structure consisting of three semisimple classes. But this could not be generalized to
characteristic 2 because the class of involutions is not semisimple for p=2. Moreover
the three cases g=3,5, 7 had to be treated separately. Here we will work with a
different class structure which is defined for all g. With the knowledge about the Green
functions available at the moment, we will prove rigidity for F,(q), p=5. The case p=3
is handled separately. But this class structure has the advantage that it yields Galois
realizations over @ for some F,(p), p € [P. This will be shown in the second section.

In odd characteristic, G= F,(q) possesses two classes of involutions, one with
centralizer structure B,, the other with C;+ A; [38]. Both centralizers contain elements
of order g+ 1 with abstract centralizer structure 4, + 4,, one of them having h,, as a
representative in [38], Table 8, the other h,5. The element h;¢ has the involution with
centralizer B, as a power. With this information, we are ready to define the class
structure for G in characteristic p+ 2. Let C, be the unipotent class of elements central
in a Sylow p-subgroup (i.e. C,=[x,] in the notation of [38]), let C, ., =[hs] (by [38],
Table 8, such a class exists whenever g > 3), and finally choose C;:=[hyy] to contain
elements of order @,,(q)=q*—q>+1.

Proposition 5. 1. For €=(C,, C,,,, Cy) of F4(q), q=p", p=5, we have n(€)=1.

Proof. An element 7 € C; generates a cyclic Hall subgroup T of G with property
(), as can be seen from Table 9 in [38]. So we can apply Lemma 1.4 to T<G. As
(H6(T): T)=12 there exist s:=(q*—q?)/12 exceptional characters A; for T and
0 e {+1}, ae Z (a priori depending on g), so that by Lemma 1. 4(3)

2 q4_q2 2 #)12
(0+a)?+ —1)a*+ Y |[x(T*)*=13.

12 X*AJ‘

Now s =(q*—¢?)/12= 50 for the relevant values of ¢, so we must have a=0. Moreover
the unipotent characters of F,(q) are classified independently of g, and exactly twelve of
them have a degree prime to |T|=q*—q*+1 ([8], p.479). Those twelve y; cannot
vanish on an element 7 € T of prime order, and now the t.i.-property of T shows that
they take a constant nonzero value on all of T*. With congruences for character values
(or the theory described in Section 1. 5 of values of unipotent characters at semisimple
elements, or the results of Dade mentioned in 1.2), the y;(T*) are determined. Due to
the above formula, the unipotent characters are all the non exceptional characters of G
not vanishing on T*. To determine the values of the y; on C,,, using Lemma 1. 8, one
has to know the maximal tori of the centralizer of an element from C,,,. But this is
equivalent to knowing the F-conjugacy classes in the corresponding Weyl group. The
centralizer of an element in C,,; has the Weyl group 4, + A, =83 xZ,, so the maximal
tori can be determined. (A list of them is reproduced in [31], Table 5. 2.) With vanishing
theorems for characters one deduces that the exceptional A; take value zero on C,, ;.
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Finally for p=35, the values of the twelve unipotent characters y; on the class C, are
calculated from the Green functions in [39] and the Fourier transform matrices in [29]
or [8]. (In [30] and private communication to the author, Lusztig proved that these
values are actually correct for all good primes, that is to say for p=5.) The values are
collected in Table 1.

Table 1: Irreducible characters of F,(g), q=p", p=5, not vanishing on T¥.

{l} Cp Cq+1 CT

b1,0 1 1 1 1

P1.24 q** . q* 1
1 1

Pa1 5‘145%@%‘1)8 5‘1‘152‘1’6(44""13"'”1) : -1
1 2 52 1 a 3 2

B,. 1 qujld)a‘ps ——Eq¢l(p3(q —q°+1) -7 1
132002 1 s

ba13 2 q"” @3 Ps Py 2 q° P, P ' -1
13222 1, 2 52

B,, ¢ Eq D7 P3Py “Eq D, 9, —q° P 1

1 1
b6,6 Eq4¢§‘pﬁ¢g¢s Eq4¢3¢4¢6(3q4+2q2+1) —2q9Ps 1

B, r %q“dﬁ(Dﬁ(P%(D%(DB —%q4¢1¢2¢3¢6¢8 : —1
D0 | atotetole, —;aa0ie, : 1
RICT| 5 qtototelo, a9l 03e, - 1
BRI | pdteioielel a8 01,0, : 1
RL-i1|  jatoieteie; 4 01010, 0, : 1
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The desired result n(€)=1 now follows from the centralizer orders
1%:(1=4>*@*— 1D (@* 1 (@ —1),
[s(0)l =q*(@+1) (@*—1)* (@* +1),
(@) =4*—q° +1,

for (g, 0, 1) € £(€) and
IGl=¢*@ -1 @ -1)@-1)(@¢>-1). "’
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Theorem 5. 1.  The groups F,(q), q=p", p=5, occur as Galois groups over @ for
the ramification structure €*=(C,, C,., C1)* (the corresponding classes containing
elements of orders (p, q +1, q¢* — q*> +1)). More precisely a proper field of definition K (q)
is the compositum of the maximal real subfield of @ ((,.,) with a field of index 12 in
Q@(Cgegoir):

Remark. The restriction p=S5 in the theorem only stems from the insufficient
knowledge of the Green functions. By a conjecture of Shoji, the values should be the
same in bad characteristic, giving rigidity with this class structure for all g=4. The
proof of generation will be formulated so that it is valid for p=3 as well.

Proof of the theorem. With Proposition 5.1, only generation remains to be
proved. So let (g, g, 1) € 2(€). The torus T ={t) was already identified in the proof of
Proposition 5. 1 as a self centralizing Hall subgroup satisfying (). Therefore H:= (g, o)
has one of the structures described in Lemma 1. 3. The first possibility is immediately
excluded by order considerations because |Ag(T)|=|(T|-12, while p(q+1)||H|. The
order of the Weyl group |W(F,)|=1152=273% is prime to o(t)=q*—q>+1, so by
Lemma 1.7(2) T cannot act fixed point freely on an r-local subgroup for a prime
r ¢ {2, 3, p}. Next we obtain an estimate for the 2-rank and the 3-rank of F,(q) for p =2,
p+3 respectively, as follows: If g=1(mod4), the semisimple subgroup (g—1)*-W
contains a Sylow 2-subgroup of G. (In the terminology of BN-pairs, this is the group N,
in the theory of algebraic groups the normalizer of a maximally split torus of F,(q).) The
Weyl group W(F,) contains W(B,)=2*-S, (with the natural action) as a subgroup of
index three, so W(F,) has the same 2-rank as 2*-S,, which is equal to four.
Consequently, a Sylow 2-subgroup S of G can have at most

2-rank (S) £ 2-rank (¢ — 1)* + 2-rank (W) <4 +4 if p+2.

In the case g= —1 (mod4), a subgroup of structure (q+1)*- W yields the same result.
Analogously 3-rank (F,(q)) <6 in characteristic p+3. As 3°=729, 28 =256 and either
IT|=27*—7*+1=2353 or |T| e {241,601}, H can not be 2- or 3-local in the sense of
Lemma 1.3(2) either. Finally none of the parabolic subgroups of F,(q) has order
divisible by @,,(q). This excludes the local cases.

The orders of g, ¢ and 7 are pairwise prime, so by Lemma 1. 3(3) and Lemma 1. 6
H must be a nonabelian simple subgroup of G, that is, one of the groups in Lemma 5. 1.
But none of the “exceptional” groups listed in Lemma 5.1 has elements of order larger
than 241<0(t)=q*—q*+1, forcing H to be a group of Lie type in characteristic p.
Only those of Lie rank at most four can be contained in G, as is seen by a comparison
of parabolic subgroups (see [27], fact 1, for an exact formulation). Applying the
divisibility criterion of Lemma 1. 5 to the orders of Lie groups K in characteristic p to
IK(p")| | IF4(g)l and ®4,(q) | IK(p")l, one is left with eleven cases, namely A, (¢°), 4,(q*),
“A,(a%) *A3(q%), B1(0*), *B;1(q%), G1(q%), *G,(q?), *D4(q), *F4(q) and F,(g). Some of these
cannot be contained in G: The centralizer of an element of order |T|=qg*—g*+1 has
order (¢®+1)/2 in 4,(q%), q®+q*+1in A,(q*) and q®+1 in B,(q%) and 24,(¢?), while T
is self centralizing in F,(q), excluding these groups. On the other hand, G,(q?) contains a
cyclic maximal torus of order g*+ g2 +1 [9], while there are no elements of that order
in F,(q) [38]. In the Ree groups in characteristic 3, the exponent of 3 is always odd, so
that 2G,(q?) does not exist. Finally in characteristic 2 neither the Suzuki groups 2B, (q?)
nor the Ree groups *F,(q) have elements of order gq*—q?+1 (remember q=2). This
leaves the three possibilities F,(g), 3D,(q) and ?4,(g?) as candidates for H.
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To handle the last cases, we have to make use of the other classes in the class
structure. Namely, in 24,(q?) the centralizer order of an element of order g +1 is always
divisible by ¢*+1=®,(q), while |4;(o)| is not divisible by &,(g) by Lemma 1.5,
excluding %4,(¢?). If p+2, 3D,(q) has a single class C of involutions [15], [16].
Furthermore, if H=3D,(q) then this class must fuse into the class C’ of ¢'¢*"2 which
was chosen so that it has centralizer structure B,. From [16] we calculate
n(C, C, Cq)sp, =1, while n(C’, C’, Cr)g =0 (the values of the characters not vanishing on
T* at C’ are determined with the Deligne-Lusztig formula). This contradiction shows
H +3D,(q), and the only possibility left is H = F,(g), proving the theorem. [l

For the groups F,(3") the class structure consisting of three semisimple classes
from [31] will be used. This avoids having to know the Green functions in characteristic
three. The notation for the conjugacy classes of G is taken from [38]. Let C,=[h,] be a
class of involutions of G central in a Sylow 2-subgroup. Further, let C*=[h?,] if
q=1 (mod4), respectively C~ =[h3] if g=—1(mod4), be a class of elements of order
(g + ¢)/2 with g=¢ (mod4) (by Table 8 in [38], elements of that type exist in G for all
q29), and finally denote by C; = [hee] a class of elements of order ®,,(q)=q*—q*+1.

Theorem 5.2. The groups F,(q), g=3", n=2, occur as Galois groups over @ for
the ramification structure €* =(C,, C*, Cy)* (the corresponding classes containing ele-
ments of orders (2, (q +¢)/2, ¢* —q* +1)). More precisely, a proper field of definition K (q)
is the compositum of the maximal real subfield of @ ({+.2) With a field of index 12 in
QCga-g2+1)-

Proof. By the same arguments as in the proof of Proposition 5.1, the only
irreducible characters of G not vanishing on at least one of the three classes are among
the twelve unipotent characters y; mentioned there. Their values were either already
calculated in Proposition 5. 1, or for the class C, are easily obtained from the Deligne-
Lusztig formula for the values of characters at semisimple elements. Namely the
centralizer of an involution in C, has a Weyl group of type B,. The conjugacy classes of
this group W(B,) are enumerated in [6], part G. The fusion into classes of W(F,) is
determined with the permutation character of W(B,)<W(F,). In the notation of [8],
p. 413, the latter is equal to x;;+x,;. Now the formula of Lemma 1.8 can be
evaluated, and we get n(€)=1 (see Table 5.5 in [31]).

As for generation, we again mimick the proof in characteristic p = 5. This applies
to the local subgroups, and to the exceptional almost simple groups. As for Lie groups
in characteristic 3, the eleven possibilities mentioned in the proof of Theorem 5.1 are
easily ruled out as demonstrated in the proof of that theorem. Again elements of order
q+1 in 24,(q?) have centralizer order divisible by ®,(g), which is not true for elements
in C% So we are left to consider the triality group 3D,(q). By [16], the conjugacy classes
of elements of orders (g —1)/2 and (q+1)/2 (for g 29) have representatives s, s?, s and
s2, s3,, 525 respectively. The centralizer orders of s; and s, in *D,(q) are divisible by
q®—1, but not the one of ¢° € C* in G. Moreover in *D,(g) there exists only one class of
involutions and one type of classes of elements of order g*—g>+1 (with representatives
s, and s,,). From [16] and [41] the following normalized structure constants of *D,(q)
are calculated:

n(s,, s, 514) =q¢°+2q¢*+q*> +2q> +1,
n(ss, sk, S14)=4°+2q* — > +2q* + 1,
n(sy, s, 514) =4°+q"+2q°+3¢° +4q* +3¢>+2¢* +q +1,
n(sy, 535, 514)=0°—q" +2¢° =3¢’ +4¢* - 34>+ 2¢* —q + 1.
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This shows that for all possible fusions of classes of *D,(q) into those of € in G, the
structure constant is too large. Consequently, the group generated by a triple from €
has to be F,(q), and the theorem holds by Lemma 1.1. W

The class structures for F,(q) introduced above do not exist in F,(2) and F,(3).
Here different class structures have to be used. Let C,:=[h,,] be a class of elements of
order four in F,(3) and as above, C, the class of involutions with centralizer structure
B,. For the classes of F,(2) we take the Atlas names.

Theorem 5. 3. The group F,(2) occurs as a Galois group over @(1/177_) for the
ramification structure CF =(2 A, 8 4, 17 A)*.

The group F,(3) occurs as a Galois group over a field of index 12 in @Q((,3) for the
ramification structure % =(C,, C,, Cp)*.

Proof. From the Atlas [11] one has n(€,)=1. All maximal subgroups of F,(2)
are enumerated in [11]. The only ones with order divisible by 17 are two groups Sg(2).
But the permutation characters for these subgroups are easily determined to be
X1+ Xa+ e+ X100+ X1z> X1+ X3+ X6+ Xo + X11, Tespectively. They take value zero on the
class 8 A, which proves that a triple of €; can only generate all of F,(2). The field of
definition is clear from the character table.

The characters not vanishing on the t.i.-subgroup T of F,(3) were already
determined in the proof of Proposition 5. 1. The two other classes in the class structure
are semisimple, so the values of the unipotent characters at those elements are
computable by the Deligne-Lusztig formula. With that we get n(€,)=1. Remains the
proof of generation. Because of the structure of T, the group H generated by a triple
from ¥(€,) has one of the structures described in Lemma 1. 3. The orders of the three
elements are (2, 4, 73). Thus, H cannot be r-local for r = 5. Again, no parabolic subgroup
of F,(3) has order divisible by |T|=®,,(3). Since 2-rank (F,(3))<8, H is not 2-local
either. None of the exceptional groups in Lemma 5. 1 has order divisible by 73, nor any
of their automorphism groups.

Besides H = F,(3), only the possibility K < H < Aut(K), with K simple of Lie type
in characteristic three remains. As in the proof of Theorem 5.1, only *D,(3) and
24,(3%)= U,(9) are not immediately excluded. As |Out(®D,(3))| =3, if H <Aut(3D,(3)),
we would already have H=3D,(3). But in the proof of Theorem 5.1 we had seen by
calculating the structure constant n(C,, C,, Cy) in 3D (q) and in G that C, can not
contain involutions of 3D, (3).

The Atlas table [11], p. 79, finally shows that all elements of order four in
U,(9) - 2 have centralizer order divisible by 5. This contradicts

|€s(0) =343+ 1) (32-1)* (3* +1).

So H is forced to be equal to F,(3). The theorem now follows from Lemma 1. 1, using
that C, is a rational class. W

The cyclic subgroup of order 17 in F,(2) indeed generalizes to a t.i.-subgroup of
order P4(q)=q*+1 in F,(2"). But for class structures with a class containing such
elements, the possibility of the generated group to be contained in B,(2") is not easily
ruled out. In the case F,(2) this was only possible because of the knowledge of the
permutation characters of such subgroups.
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Theorems 5.1 through 5. 3 complete the realization of all groups F,(q) with p=3
or g=2 as Galois groups over @. It turns out that it is possible to choose a class
structure of F,(p) for certain p such that the field of definition is @. This will be shown
in the next section.

5. 2. Realizations of some F,(p) over @. The orders of all groups F,(p) are
divisible by thirteen. If p is a primitive root mod 13, the factor of the group order
containing the thirteen is @,,(p)=p*—p*+1. In this case we can hope to get F,(p) as
Galois group over @. Namely in the class structure of Proposition 5. 1 for F,(q) replace
the class C; by the class of elements of order thirteen in T. Then most of the above
arguments remain valid for the new class structure. Moreover we choose the second
class to contain rational elements with centralizer structure 4, + 4. For this it is useful
to consider besides C,,, also C,_,=[h;s]. We now define Cq:=[hi{%""/®] if
p=—1(mod3), Cq:=[h% V6] if p=1 (mod 3). Obviously C, contains elements of order
six, and by [38] their centralizer structure is A, + A, whenever p=S5. Finally, let
Cyai=[hgy ~+1113],

Theorem 5.4. The groups F,(p), p=2,6,7,11 (mod 13), p=19, occur as Galois
groups over @Q for the ramification structure €*=(C,, Cq, C,3)*.

Proof. The semisimple classes Cq, C;5 contain elements with the same centralizer
structure as elements of C,,,, Cy respectively. By the Deligne-Lusztig formula, the
values of the unipotent characters on those classes must therefore be the same as the
values calculated in the proof of Proposition 5. 1. Hence we arrive at n(€)=1.

As for the structure of the group H generated by a triple of elements from X(C),
we can invoke Lemma 1. 3, because the centralizer in G of the element of order thirteen
is once more the t.i.-torus T. Case (1) of the lemma obviously cannot occur for the
primes p chosen. One immediately verifies, that of the local cases, only the possibility of
an elementary abelian subgroup of order 27 or 729, with T acting fixed point freely
remains. But as the top simple composition factor of H has a (p, k, 13) generating triple
of elements, k|6, an element of order p must act nontrivially on Z3 or Z$. This forces
p|IGLg(3)|. All such p are smaller than 19, and so excluded in the theorem.

By Lemma 1.3 and Lemma 1. 6, H must be a simple subgroup as in Lemma 5. 1.
There are nine sporadic simple groups with order divisible by 13. Seven of them contain
elements of order 11 conjugate to five or ten of their powers, which can happen in G
only in characteristic 11, which was excluded. The two remaining sporadic groups, Ru
and Th, contain elements of order 29, (resp.31) conjugate to 14 (resp. 15) of their
powers, which is possible only if p=29 (resp. p=31). But these primes do not satisfy the
conditions of the theorem. Of the remaining exceptional groups in Lemma 5. 1, eleven
have order divisible by 13. The only other primes dividing the orders of these groups
are 5 and 7. Hence H, which contains elements of orders 13 and p, must be a group of
Lie type in characteristic p. As 13 is a primitive divisor of p'>—1 for the congruences
mentioned in the theorem, the arguments in the proof of Theorem 5.1 apply. Namely,
H is one of 3D,(p), 24,(p?) or F,(p). The first and the second case are excluded as in
Theorem 5.1, and the assertion of the theorem is proved. W

51 Journal fiir Mathematik. Band 392
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§ 6. Groups E(q) as Galois groups over Q®

When trying to realize groups of type E, as Galois groups, a new obstacle is
encountered. Namely the group of fixed points G* of the reductive algebraic group G of
type E¢ under the Frobenius F has either a nontrivial center (simply connected case) or
a nontrivial commutator factor group (adjoint case) of order three if g=1 (mod 3). The
cases are distinguished by the subscript E¢(q),., Eg(q).a respectively. In the case of
nontrivial center, the criterion of Matzat and Thompson does not apply. In the simple
group E¢(q)s./Z(E6(q)sc) = E¢(q)aa = E¢(q), the structure constants tend to be multiples
of (g—1, 3)>. This means that only in the case g= —1 (mod 3) good class structures are
easily found. In the other case no rigid class structure could be determined.

First we will compile a list of possible simple subgroups of Eg(q) to be able to
handle the problem of generation. As 2E¢(q) is defined as a subgroup of E4(q?), we
simultaneously obtain a list of possible simple subgroups of the twisted groups of type
E¢. This will be needed in the next paragraph. As it is not the aim of this paper to
determine the maximal subgroups of the exceptional groups of Lie type, no effort is
made to exclude as many simple groups as possible. For the purpose of the main
theorem in this paragraph, a rough idea of what the simple subgroups of E¢(q) look like
will be sufficient.

Lemma 6. 1. A nonabelian simple subgroup of E¢(p") or 2E¢(p") is either a group
of Lie type in characteristic p or one of the following:

(1) L,(r™ with r™e {7, 8, 11, 13, 16, 17, 19, 25, 27, 37, 41, 49} or

(2) L3(), L3(4), L3(5), La(3), L5(2), $4(3), S4(4), S4(5), S6(2), S¢(3), 0,(3), U5(3),
Us(4), Us(5), Us(3), Us(2), Ug(2), O5 (2), Go(3), Og (2), °Da(2), *Fa(2), Sz(8) or

3) A, with 5Em<18 or
(4) a sporadic simple group.

Proof. By Lemma 1.7(3), E¢(p") (and so 2E4(q) due to ZE¢(p")<Eq(p*")
possesses abelian Sylow r-subgroups for all primes r different from the characteristic p
and not dividing the order of the Weyl group |W|=273*5. Simple subgroups of G of
Lie type in characteristic r can thus only be of type L,(r™). With the projective

representation of G of degree 27 over E and [26] all possible r™ are determined as
usual. Moreover L,(r™) with r™ e {23, 31, 43, 47, 53} can not occur inside G, because
they contain elements of order 23, 31, 43, 47, 53 conjugate to 11, 15, 21, 23, 26
respectively of their powers. This is possible in G only for r=p by Lemma 1. 7(2), as no
subgroups of these orders are contained in W(E,). Groups of Lie type in characteristic _

r=2,3 or 5 having a projective representation of degree at most 27 over F;, r<£p, are
found in [26] again. This leads to part (1), (2) or (3).

The alternating groups A4, with m=>=19 have a 17-cycle conjugate to all of its
primitive powers by an element of order 16. As W(E¢) =~ U,(2)-2 does not contain an
element of order 16 by [11], p. 27, A,, may be a subgroup of G only in characteristic
p=17 by Lemma 1. 7(2). In this characteristic, we proceed as in the case of F,(q) (proof
of Lemma 5. 1). The centralizers of elements of order three in G are known by the work
of Mizuno [35]. Their nonabelian simple composition factors are of Lie type 4 and D
(or twisted versions of these) in the same characteristic and of Lie rank at most 5. But
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all of those have a projective representation of degree at most 10 over 0——”;, while the
smallest nontrivial representation of A4,, in characteristic 17 has degree 11. This shows
that even for p=17, only a group A,, can possibly occur in E(q). With the
classification of finite simple groups, this proves the lemma.

For the reasons explained above, we will only consider g = —1 (mod 3), G:= E4(g),
for rigidity. The classes of semisimple and unipotent elements were calculated by
Mizuno [35]. His notation for the classes will be used here. Let C, be the unipotent
class [x;] (the class A4, in [5] and [8], p.402) with centralizer order
@ - @ -1 @ —1)(¢>—1)(g°—1), Cp_, a class of elements of order g*>—1 with
centralizer structure 24,(q)+A4,(q*), and C, a class of elements of order
4°+q° +1=dy(g).

Proposition 6. 1. For €=(C,, C;._;, Cy) of E¢(q), g=p"=—1(mod3), p=5, we
have n(€)=1.

Proof. From the list of centralizers in [35] one sees that an element 7€ C;
generates a cyclic Hall subgroup T of G with the property () of Section 1. 2. We apply
the lemma of Feit to this t.i.-torus. As (A5(T): T)=9 (see for example [6], G-17), there
exist (¢ + q*)/9 exceptional characters A; for T, while all other irreducible characters of
G are constant on T*. The equations of Lemma 1.4 hold. From the list of degrees of
unipotent characters of G in [8], p. 480, exactly nine are prime to |T|=®4(q). It was
already pointed out in the case of F, that therefore these are the nonexceptional y; not
vanishing on T*. The Weyl group of the centralizer of an element in the semisimple
class C,._; has the structure W(*4,+ A;)= S, x Z,. The maximal tori of this centralizer
are described in Table 6.1 of [31]. The values of the unipotent y; on C,._; are now
calculated according to Lemma 1. 8. For the unipotent classes we have the results of
Beynon and Spaltenstein [5] giving the values of the Green functions for large enough p
and ¢ (indeed for all good p by [30]). From them, with the theorem of Lusztig [29] the
unipotent character values on C, can be computed for p=5. This completes Table 6. 2
in [31], containing the characters not vanishing on T*. With the centralizer orders

16:(0) =q°(@*—1)* (@>+1) (@*—1), 0 € Cpa_y, |%:(T)I=q°+q°>+1,
and
IGl=g*@*-1)(@*-1) (@ -1 (-1 (-1 (g?*-1),

we now get n(€)=1. W

Theorem 6. 1. The groups E¢(q), gq=p"=—1(mod3), p=5, occur as Galois
groups over @ for the ramification structure €* =(C,, C,2_,, Cy)* (with the correspond-
ing classes containing elements of orders (p, g>*—1, q® + q> +1)). More precisely a proper
field of definition K (q) is the compositum of the maximal real subfield of @ ((,:-,) with a
field of index 9 in @ ((g6+443+1)

Proof. In Proposition 6.1, n(€)=1 was shown. So let (g, 0, 7) be a triple in Z(€)
for which generation will be studied. The Hall property of {(t) =T leads to the cases of
Lemma 1. 3. The first possibility is immediately excluded because H is nonsolvable by
Lemma 1. 6 while A (T)=T-9. The order of the Weyl group |W|=273%5 is prime to
0(t)=q°+¢q>+1 (here we use g=—1(mod3)). Thus by Lemma 1.7(2) H cannot be
r-local for r¢ {2, 3, p}. Further, by studying subgroups of the form (g—1)®-W in
E¢(q) the following estimates are obtained: 2-rank(Eg)<11 and 3-rank(E¢)<9 in
characteristic p+2, 3. But 7 has order at least @,(5)=15751, while on the other hand
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211 =2048 and 3°=19683. Consequently T cannot act fixed point freely on a 2- or 3-
local subgroup either, which excludes these local cases. Finally none of the parabolic
subgroups of E¢(q) has order divisible by &4(qg).

By Lemmas 1.6 and 1.3, H has to be one of the nonabelian simple groups in
Lemma 6. 1. The order o(t) 215751 of t is larger than any of those occurring in the
exceptional groups in the lemma. Therefore the discussion can be confined to groups of
Lie type K in the same characteristic. From the formulae for the orders of the groups of
Lie type and the conditions |K]| | |E¢(g)] and @(qg) | |K| and using Lemma 1. 5 we arrive
at the 17 cases 4,(¢°), 4,(q°) A5(q%), A2(a>?), *A;(¢*?), B,(¢°'*), B3(¢*?), Ba(¢*?),
C3(q*%), C4(q®?), Da(@*'?), 2D4(@?), Da(@**), G1(q*?), F4(q*"*), *E¢(q"'?) and E4(g). Of
these, all but 4,(q*), A5(¢®) and E¢(q) do not possess elements of order g°+¢> +1. In
A;(q%), an element of order q® +¢> +1 has centralizer order q° —1>|T|. An element of
order g>—1 in A,(q) has centralizer order divisible by q® — 1, which is not the case for
the element o from the class Cp:_; in G. Thus H has to be equal to E4(g), and the
assertion follows with Lemma 1.1. W

§ 7. Groups 2E¢(q) as Galois groups over Q*°

The results of the last paragraph of the groups Eg(g) can easily be transferred to
the very similar groups 2E¢(q). In contrast to the situation for E4(q), the groups 2E¢(q)
possess a nontrivial Schur multiplier if g= —1 (mod 3). Therefore we will restrict our
attention to g=1 (mod 3), the other case not being tractable at the moment.

A classification of the unipotent classes of 2E¢(q) for large enough p and q is to be
found in [5], Section 4. Namely it is shown that they correspond to the unipotent
classes of the untwisted group E¢(q), with the centralizer order obtained by replacing g
by —gq in the respective order in E4(q). The conjugacy classes of semisimple elements
are enumerated in [15], Table 4. Let C, be the unipotent class of 2E¢(q) with centralizer
order ¢**(¢>—1) (¢*+1) (¢*—1) (¢° +1) (¢°—1), C,4; a class of semisimple elements of
orders g+1 and centralizer structure 24,+2A4, ([15], Table 4) and C; a class of
elements of order ®,5(q)=q°—q>+1.

Proposition 7. 1. For €=(C,, C,,, C1) of *E¢(q), q=p"=1(mod3), p and g
large enough, we have n(€)=1.

Proof. From the centralizer orders in Table 4 of [15] it is seen that an element
7 € Cy generates a cyclic Hall subgroup of G=2E¢(q) with the property () of Section
1. 2. Moreover (A5(T): T)=9 (see [15]), whence the existence of (g% — g*)/9 exceptional
characters A, for T, and the equations of Lemma 1. 4 apply. Exactly nine of the degrees
of unipotent characters of G are prime to |T|=®;5(q) (see [8], p.481). Consequently
these are all the nonexceptional characters of 2E4(g) not vanishing on T¥.

To calculate the values of these characters on the semisimple classes C,.; and Cr,
we have to make some modifications to the formula in Lemma 1. 8. Namely, the classes
of maximal tori in G are now classified by F-conjugacy classes of W(E4), which are
different from the ordinary conjugacy classes of W(Eg). This makes the expression y(w)
in Lemma 1. 8 not well defined. But in [28], Theorem 1. 15, the calculation of {g, R,,)
in this case is described. If we take

R1== lWl—l Z X(WWO)Rwa
weW
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then we have (g, §1>2E6=£e<g’, R, )>g,. Here g < ¢’ is a suitable bijection, detailed in
[28], from the unipotent characters of 2E¢(q) onto the ones of E¢(q), and w, denotes the
longest element of W. Again this formula holds only for large enough q. We can now
calculate the values of the unipotent characters on the semisimple classes in the class
structure. The classes of maximal tori [T,] of the centralizer with structure 24, +24,
and the fusion of the ww, in W(E¢) are given in Table 7.1 of [31]. The values on the
unipotent class C, may be obtained from the information in [5], Section 4, for p and ¢
large enough. (Unfortunately, no lower bound for p or g can be given.) They are the
ones for E¢(q), with g replaced by —gq. The irreducible characters not vanishing on T#
are listed in Table 7.2 of [31].

With the centralizer orders

1%6(T)=q°—a>+1, |6:(0)=a°@+1)*(@*~1)* (> +1)

and
IGl=g*@* -1 (@ +1)(@*-1) (-1 @°+1)(¢g"*-1)
one gets n(C)=1. W

Theorem 7. 1. The groups *E¢(q), ¢ =p"=1(mod 3), p= 5, p and q large enough, occur
as Galois groups over @ for the ramification structure C* =(Cp, Cgus1, Cr)* (with the
respective classes containing elements of orders (p, q+1, ¢® —q>+1)). More precisely, a
proper field of definition K(q) is the compositum of the maximal real subfield of Q((,+,)
with a field of index nine in @ ({y—z3+1)-

Proof. The similarity between 2E¢(q) and Eg(q) is reflected in the proof of the
theorem, which consists more or less of the proof of Theorem 6.1, with only minor
modifications. Let (g, o, 7) be a triple in £(€). Using the Hall property of the maximal
torus T =<t) < H:={g, o), we can invoke Lemma 1. 3. The local cases are disposed of
exactly as in the proof of Theorem 6.1 due to (|T|, p|W|)=1 and |T| = ®,5(7)=117307.
Thus H must be one of the simple groups in Lemma 6.1 by Lemmas 1. 3 and 1. 6. The
order of 7 excludes all exceptional cases of the lemma, leaving the groups of Lie type in
characteristic p. The divisibility criterion of Lemma 1. 5 leads to a list of cases as in § 6,
with g replaced by —gq (i.e. A, replaced by 4,). Besides H=G, only %4,(q%)=U,(¢%)
remains as a candidate. But an element of order ¢+ 1 in Us(q®) lies in a maximal torus
of this group of order (¢ +1)? or g®—1. No such tori exist in €;(c) ([31], Table 7. 1).
Therefore we have H =2E(q) and the theorem follows with Proposition 7.1. 1

The restriction “p and q large enough” seems to be of a more technical nature; it
is needed for the classification of the unipotent classes and for the determination of the
Green functions. In both cases, the results should be uniform for all good p. At least this
is so for the untwisted groups [30].

§ 8. Groups E, (¢q) as Galois groups

For groups of type E,, the methods of the preceding paragraphs are not
immediately applicable. First, E,(q) contains no cyclic selfcentralizing t.i.-Hall subgroup.
Second, for odd prime powers g the group G of fixed points of the algebraic group
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under the Frobenius map is not simple — the problem which was already encountered
with E¢(q) for g=1(mod3) now arises for all p+2. The Rationality Criterion and
Lemma 1.1 are only applicable to groups with trivial center.

To remove the first obstacle, the full results of the Deligne-Lusztig character
theory of reductive groups have to be used. Until now, this was avoided so as to keep
the exposition reasonably straightforward. The second problem can be solved by a
suitable choice of the three classes in E,(q),q and descent to the commutator factor
group, which is the simple group in question.

8. 1. The Lusztig character theory. For the calculation of a normalized structure
constant in E,(q),q, the complete Lusztig character theory, as described in [29], will be
needed. One of the most important results is the so called Jordan decomposition of the
irreducible characters of G* for a connected reductive algebraic group G with connected
center. In § 1. 5, the generalized characters Ry ¢ of the group GF were mentioned. As the
Deligne-Lusztig characters belonging to pairs (7, ), (T’, 0’) which are not geometrically
conjugate do not have any irreducible component in common, and on the other hand
every irreducible character occurs as a component of some Ry, ([8], Corollary 7.5.8),
this defines a partition of the irreducibles of G into disjoint families, parametrized by
the classes of pairs (T, ) modulo geometric conjugation. To describe these families, a
simple classification of the classes (T, §) under geometric conjugation is needed. In [8],
Theorem 4. 4.6, a bijective correspondence between these and the semisimple classes of
the dual G*** of GF is proved. (For the type G¥=E,(q),q, the dual group G*I is
isomorphic to E,(q)s, [8], p- 120.) Each irreducible character y of G is a component of
a unique class of Ry 4, thus it corresponds to exactly one F-stable semisimple conjugacy
class [s] of G*. If y belongs to the class of se G* we write x € &. The unipotent
characters for example were defined as the components of the Ry ;, and (T, 1) belongs to
the identity element of G*, so the unipotent characters lie in &,,.

The second step to the Jordan decomposition of the complex irreducible
characters of G is the description of the characters belonging to one class &,. Lusztig
proved a bijection from the characters y of G* in &, to the unipotent characters of the
group dual to %;(s), which will be called H. The results of §1.5 show that the
knowledge of the values of the y on the semisimple elements of G¥ is equivalent to the
knowledge of the multiplicities (x, Ry ) for all Ry, of GF. Again, these multiplicities
were determined by Lusztig. As each y is contained in just one &, (belonging to the
geometric conjugacy class of (T, 6)), we can get nonzero multiplicities only for those
Ry 4. If in the bijection mentioned above y corresponds to the unipotent character ¢ of
H = %g.(s)* (the group dual to the centralizer in G*** of s; this can again be interpreted
as a subgroup of GF), then (x, Rr,q) is equal to (g, Ry )5 up to sign. Here Ry ; denotes
a Deligne-Lusztig character of H. Furthermore the sign only depends on the class of s.
It can be obtained from the condition x(1)>0. Thus the degree of the irreducible
character yx € &, is the product of the degree of the corresponding unipotent character ¢
of H with |(GF:H)|,. This complete classification of the y resembles the Jordan
decomposition of the elements of G* into semisimple and unipotent part. The above
results are contained in Theorem 4.23 and Chapter 8 of [29]. A short form can be
found on pages IX—X of the same book.
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The formula for the calculation of the values of unipotent characters at semisimple
elements in § 1. 5 holds with suitable changes for all irreducible characters y of GF. So
one obtains

1) =¢el6c @) 1,1 Y er 2 0@ (1 Rro)-

TFat 0eTF

With a knowledge of the (T, 0) belonging to se G*, the value of ye &, at every
semisimple element ¢ € G can be computed.

8. 2. Proof of n(€)=1. Now let G:=E,(q),q with g=p". As the values of the
unipotent characters at unipotent classes are at present only known in good
characteristic [30] and the class structure will contain a unipotent class, let p>5. A
class with some similarity to the t.i.-Hall classes used until now is C%, containing
elements of order (¢—0)(¢°+dq*+1) with g=—6(mod3). Define C, to be the
unipotent class 44, in [5] or [8], p. 403. To assure generation of G, choose the third
class so as to contain involutions from G\G'. According to [6], Part F, §§ 11 and 12,
those have centralizer structure 4, or 24,. More precisely, in case g=1(mod4) an
involution with centralizer %4,(q) is not contained in G’, in case ¢= — 1 (mod 4) the one
with centralizer 4,(q). Let the class C, consist of such elements. (The condition in [14],
p. 201, for the existence of elements with centralizer structure A, or 4, is not quite
correct.)

Proposition 8. 1. For the class structure €=(C,, C,, C3) of E;(qQ)a, PS5,
q=—9 (mod 3), we have n(€)=1.

Proof. Contrary to the situation in the preceding paragraphs, t € C; does not
generate a cyclic t.i.-subgroup of G. In particular, Lemma 1.4 about the exceptional
characters does not apply. But nevertheless the theory of Lusztig enables us to get a
survey of all irreducible characters of G not vanishing on C;. From [14] we see that the
elements 7 of order (g — ) (q°+ 6q> +1) are regular (i.e. contained in just one maximal
torus T, of G, the one generated by 7). This simplifies the formula for character values
from the first section to

1@ =¢eer, 3, 007" (% Re, o).

0eT,

Thus, the irreducible character ¥ of G will not vanish on 7 only if it occurs as a
component of some Ry ,. The classes of pairs (T, 0)) are classified by semisimple
conjugacy classes [s] in the torus of order (q—J) (¢°+J¢>+1) in G*=E,(g),. dual to
T. These can be found in Table 1 of [14].

The characters for s=1 are the unipotent characters of G. Equally many
characters with the same degrees belong to the element of order two lying central in G*.
The computations will show that these take the same values at the elements of G’ as the
corresponding unipotent characters, while their values at elements from G\G' are
negated. This is not surprising, because both families of characters originate from the
unipotent characters of G’ by induction to G. To the elements s with o(s) | (g — ),
o(s)# 1, 2, there exist another (g —2 — 6)/2 families of irreducibles, each parametrized by
the unipotent characters of EZ(q). (Here we denote E{ (q):=E¢(q) and Eg (9):=2E¢(q).
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For the relevant congruences, E2(q),q and E2(g),. coincide.) Finally remain the regular
s e T}, i.e. those elements of the cyclic torus T;* whose order does not divide g —J. As
%s+(s)= T* has only one unipotent character, namely the trivial one, the corresponding
(q—90) (q° + 6¢>)/18 families consist of just one irreducible of G. These correspond to the
exceptional characters in the earlier examples. The following table collects the families of
characters not vanishing on t:

0(s) number e (s)* 16 0(x)
1 1 G 76 1
2 1 G 76 -1
l(g—0), #1,2 (q—2-9)/2 (q—9)- Eg(q) 30 {g-s
¥(g—9) (@—9)(q°+d4°)/18 T, 1 Ca-aas+sa2+1)

By the result of Lusztig, we now also know the degrees of those characters. The classes
of pairs (7, 0) belonging to the semisimple classes s € T.* each possess a representative
(T,, 0) with 0(z) as in the table ([8], Section 4.4 and 4.5). Now we are ready to
calculate the values of the y € &, at 7, because the multiplicities (x, Ry, o) are known for
0 =1 by [28]; in the general case they coincide with (g, Ry ;) for some unipotent ¢ of
H :=%;.(s)* (where in our case H is either E2(g) or the torus, so that again [28] and [1]
can be used). We get that only eighteen characters from the first two families do not
vanish on 7. Of the thirty characters in the families of the third type, only nine take
nonzero values at t. The tables of these values are not reproduced here, they can be
found in [31] (Tables 8. 2 and 8. 3). The fourth type of families will vanish at one of the
other classes, so we need not consider it here.

Next, the values of the remaining characters y at ¢ € C, shall be determined. The
classes of maximal tori of the groups A,(q) and ?4,(q) may be obtained according to
[6], Part G, and are given in Table 8.1 in [31]. For the unipotent y € &), we proceed
with Lemma 1.8. As ¢ was chosen to lie in G\G’, it cannot be a square in G.
Consequently, the 6 in the class of (7, 6) with se T* and o(s)=2 take value —1 at o.
With the formula of the first section we therefore get that the characters of the second
family take the negative of those of the unipotent ones on ¢. As the centralizer order of
¢ is not divisible by q®+ 843 +1, o is not contained in T,, and the characters of the
fourth type (the “exceptional” characters for T,) vanish at the second class. (This could
also be deduced from the description of these characters in 7. 3.5 and of their values in
7.5. 3 of [8].) Finally the evaluation of the formula for the characters y of the third type
is possible. The complete results are given in [31].

The values of the R, x € VI7(\E7) at the class C, can be found in [5]. With this, the
values of the unipotent characters at C, can be computed as usual. By Corollary 7.2.9
of [8], the Ry 4(u) for u unipotent are independent of 0, i.e. equal to the Green
functions. For s e T.* with o(s)=2 we have H =%;.(s)* =G. Accordingly, for y of the
second type (x, Ry, ) coincides with (g, Ry, ;) for some unipotent ¢ of G up to sign. Now
1e G can be thought of as unipotent, and we have x(1)>0. So we must have
(x> Ry,9)=(0, Rr,;) and together with Ry 4(u) =Ry (u) even x(u)=¢(u) for a suitable
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bijection y «<» ¢ (namely for a bijection preserving the degree x(1)=¢(1)). Again the
characters of the third type cause the biggest computational difficulties. But the
procedure in principle resembles the one for the second type. Namely, by [28], the
knowledge of the multiplicities (x, Ry ,) already suffices to express y as a linear
combination of Ry, (and so x(u) as a function of the Ry ,(u)). So we only have to
determine the Ry, (u). They can be obtained from the R, in [5] with the formula for the
multiplicities of the y in the Ry, in [28] (and for small g in [30]). Those are then
considered as Green functions of E2(q), leading to the determination of the values of the
x in the EZ-families as in the preceding paragraphs. All character values are collected in
Tables 8. 2 and 8. 3 of [31]. With them and with

%6 (@=q" (> —1) (¢*—1) (¢°—1),
%6 (0)=2q%(@*— 1) (@®— D) (¢*— 1) (@> =1 (g°—1) (g"—1) (g*—1)
and

|66 (1) =(@—0) (q°+ 4> +1)
for (0, 0,7) € €, we get n(€)=1 in all cases. N

8. 3. Proof of generation. Although none of the classes in the class structure for
E.(q).q contains generators of t.i.-subgroups (which would then have enabled us to
invoke Lemma 1. 3), we still only need a list of possible simple subgroups of G to prove
I'(€) =1. This is obtained from the classification in the usual way.

Lemma 8. 1. A nonabelian simple subgroup of E,(p").q (or E,(p")) is either a
group of Lie type in characteristic p or one of the following:

(1) L,(™ with r™e {7, 8, 11, 13, 16, 17, 19, 25, 27, 29, 31, 32, 37, 41, 49, 61, 81}
or
(2) L3(3), L3(4), L3(5), L3(7) Ls(3), L5(2), Le(2), S4(3), S4(4), S4(5) S4(7) $409),

S6(2), S6(3), Ss(2), Ss(3), 0,(3), Og(2) Fu(2), G,(3), Us(3), Us(4), Us(5),
Us(7), Us(8), Us(3), Us(d), Us(2), Ug(2), U5(2), Og (2), *Da(2), Sz(8), *Fo(2)' or

3) A, with 5=m=21 or
(4) a sporadic simple group.

Proof. For r¢{2,3,5 7, p}, the Sylow r-subgroups of E,(p"):=E,(p"),q are
abelian. Simple subgroups of Lie type in characteristic r therefore can only be groups
L,(r™). The normalizer of a Sylow r-subgroup in L,(r™) is a Frobenius group of order
(r™—1)r™2. Thus, if L,(r™) occurs as a subgroup of E,(g), by Lemma 1.7 there must
exist an element of order (r™—1)/2 in W(E,). From the Atlas [11], p. 47, the maximal
order of any element in W(E;)=2x S¢(2) is 30. This forces r™—1<60, and because of
(r™—1) | 2|W(E,)|, only r™ € {11, 13,17, 19, 29, 31, 37, 41, 61} remain (43 can be excluded
because W(E,) does not contain elements of order 21). As E,(q) has a modular
representation of degree 56 over [, the results of [26] yield a list of possible simple
subgroups in characteristic r € {2, 3, 5, 7}, r+p. From this, we arrive at (1) and (2).

Now 2 x S¢(2) =~ W(E,) does not contain elements of order 16, so by the argument
in §6 for E¢(q) we see that for p+17 no alternating group A,y can be contained in
E-(q). For p=17 we again look at the centralizer of an element of order three. By [14],
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its composition factors are groups of Lie type 4,, D, with [ <6 or E¢ (possibly twisted
versions). None of those contains A4,, with m > 18 (this is shown for E¢ in the proof of
Lemma 6.1). As in the cases of F, and E4; we can therefore deduce that at most an
alternating group A4,; can be a subgroup of E,(q).

The lemma is now immediate from the classification of finite simple groups. W

We are now ready to formulate the main result:

Theorem 8. 1. The groups E;(q).q, q=p", P95, = — 9 (mod 3), occur as Galois
groups over @ for the class structure €* =(C,, C,, C§)* (with the respective classes
containing elements of orders (p, 2, (9 —0) (q® + 64>+ 1))). More precisely, a proper field
of definition K°(q) has index eighteen in the abelian field @ ({7 - 546+ 544 g3 +q-5):

Proof. With Proposition 8.1, only the generation of G=E,(q),q by a triple
(0, 6, 7) € £(€) remains to be proved. Now T:=<{1? %) forms a t.i.-Hall subgroup of G,
so that H:= (g, ) has one of the structures given in Lemma 1. 2. The stronger assertion
of Lemma 1. 3 does not apply in this case though, because the centralizer of 7 is not a
Hall subgroup of G.

From the list of centralizers in [14] we immediately get that case (4) of Lemma
1. 2 cannot occur. Furthermore we have |T|=q°+ ¢+ 1= &, (5) = 15751, excluding (5).
With this, only the local subgroups and the normalizers of simple subgroups remain to
be considered. The normalizer of T in G has order o(t)- 18. Due to p=5 this is prime
to p, and we are not in the first case of Lemma 1.2. For the second case, i.e.
H < #5(Z)), first assume r + p. The estimate for |T| and Lemma 1. 7(2) show in this case
that r either is one of the torsion primes 2 or 3, or we must have u=0. As for F, and
E, estimates 2-rank (G) <7+ 8 and 3-rank(G’)<7+ 3 can be derived. But 2!*=16384,
215 =32768, 3° =19683, 31° = 59049, while |T|=15751 in case g=35 or |T|=117307 for
g=7, so we get =0 for all r+ p. Namely, Z; is contained in €;(T)=T x Z,_;, whence
rlg—¢6 and v=1. From Table 1 in [14] we find that the centralizer of a subgroup Z,
with r|g—J and T<%;(Z,) contains a group (q—9)- El(q) (by the choice of & the
possibility A45(q%) is excluded), with normalizer N:=(q—9)- E(q)-2. Assume H<N.
Then N contains a (p’, 2, (—9J) (q° + 8¢> + 1))-system of elements. The Schur multiplier
of El(q) is trivial for the given congruences, consequently N has to have a normal
subgroup isomorphic to EZ(g). After factorization by this normal subgroup we are left
with a dihedral group (¢ —d) - 2 of order prime to p. The above triple of elements then
reduces to one of the forms (1, 1, 1) or (1, 2, 2). In any case EZ(g) would have to contain
elements of order (q— &) (¢® + d4¢> +1)/2, which is not so by [35] for g—d>2. This
excludes Lemma 1. 2(2) for r=p.

On the other hand, a p-local H is contained in a maximal parabolic subgroup of
G by Lemma 1.7(1). The only maximal parabolics of G with order divisible by
(q®+d¢> +1) have the form Q:=P - (q—J)- E%(q), where P denotes some p-group. If H
is contained in @, the same arguments as before apply. Namely, Q has a
(P, 2, (9—9) (¢° + 6q> + 1))-system, which, after factoring out the p-group P, gives
similar system for (q—d)- E2(g). This was already shown to lead to a contradiction
above.

Hence only the cases (3) and (6) of Lemma 1.2 remain. Obviously, none of the
groups Aut(K), for K one of the exceptional groups in Lemma 8. 1, possesses elements
of order exceeding 15750. The nonabelian simple group R of Lemma 1. 2 therefore has
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to be of Lie type in characteristic p. From the theory of primitive divisors in Lemma
1. 5, all such groups apart from E2(q), A5(¢>) and E,(q) can be excluded. Moreover this
proves that case (6) of Lemma 1.2 does not occur.

The orders of the elements in the three classes of € now finally allow us to arrive
at the desired conclusion. Namely, we already have E2(q) or 4%(q®) normal in H. The
outer automorphism groups of those simple groups are either cyclic or dihedral. With
an argument as in the local case we derive the contradiction that E2(q) or A%(q)
contains elements of order (§—d)(¢®+5¢>+1). This only leaves H = E,(q),4, proving
the theorem. W

It is an easy step to obtain Galois realizations for the simple groups G':= E,(q).4.
The arguments for the descent to this normal subgroup of index two in G can be found
in [33] for example. This leaves the field of definition fixed, and we get

Theorem 8. 2. The simple groups E-(q).4, q=p", p=5, q= — 6 (mod 3), occur as
Galois groups over Q® for the ramification structure €*=(C,, C,, C})* (with the
respective classes containing elements of orders (p’, p’, (q—9) (q°+ g+ 1)/2). More
precisely a proper field of definition K°(q) has index eighteen in the abelian field

@(Cq7—6q5+6q4—q3+q——6)'

§ 9. Groups E;(q) as Galois groups

In G:=Eg4(q) no class structure containing only semisimple classes and with class
number one could be found. So a unipotent class has to be incorporated into the class
structure. This leads to the problem that character values are at present only known in
good characteristic, i.e. p=7. On the other hand, for certain congruences of the prime p,
a rationally rigid class structure for Eg4(p) is determined, leading to realizations of these
groups as Galois groups over @. Again, we first compile a list of possible simple
subgroups of G.

Lemma 9. 1. A4 nonabelian simple subgroup of Eg4(p") is either a group of Lie type
in characteristic p or one of the following:

(1) L,(r™ with r™e {7, 8, 11, 13, 16, 17, 19, 25, 27, 29, 31, 32, 37, 41, 49, 61, 64,
81, 125, 128, 243, 343} or

(2) L3(3), L3(4), L3(5), L3(7), L3(8), L3(9), L4(3), La(4), L4(5), Ls(2), Ls(3), Le(2),
L6(3)5 L7(2)a L8(2)5 S4(3)’ S4(4)9 S4(5)a S4(7)9 S4(8)’ S4(9)7 S6(2)a S6(3)’ S6(5)’ S6(7), Ss(z),
Ss(3), S10(2), S10(3), 0,(3), 05 (2), 05 (3), Of5(2), F4(2), G,(3), G,(4), G,(5), Us(3), U5(4),
Us(5), Us(7), Us(8), Us(9), U3(16), Us(3), Us(4), Ua(5), Us(2), Us(3), Us(4), Us(2), Us(3),
U;(2), Ug(2), Us(2), O5 (2), O5 (3), O10(2), °Dy(2), *Dy(3), Sz(8), Sz(32), *F,(2)’, or

(3) A, with 5=m=<24 or
(4) a sporadic simple group.

Proof. For primes r ¢ {2,3,5,7, p} dividing the order of G:=Eg(p"), G has an
abelian Sylow r-subgroup by Lemma 1. 7. Simple subgroups of Lie type must therefore
have the type L,. The normalizer of a Sylow r-subgroup in L,(r™) is a Frobenius group
of order (r™—1)r™/2. For L,(r™) to be contained in Eg(g), by Lemma 1. 7(2) there must
exist an element of order (r™—1)/2 in the Weyl group W(Eg), |W(Eg)|=2'43527. By
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the Atlas [11], p. 85, the maximal element order in W(Eg)=2 - Oz (2)- 2 is thirty. So we
have r™—1<60, and because of the divisibility condition we are left with
r"e {11, 13,17, 19, 29, 31, 37, 41, 61}. A list of possible subgroups of Lie type in
characteristic r€ {2, 3, 5,7}, r+p, of G can be obtained from the fact that G has a
representation of degree 248 over [, using the result of [26]. Excluding those groups
isomorphic to alternating groups, one arrives at the parts (1) and (2).

Alternating groups on 23 or more letters contain a Frobenius group of type
23 .11, so by Lemma 1. 7(2) they cannot be contained in G in characteristic different
from 23. The centralizer of a semisimple element of order three in Eg(q) has as
composition factors only groups of Lie type 4 and D of rank at most eight, E¢, 2E¢ or
E,, all in characteristic p. The latter contain at most an alternating group 4,, (see
Lemma 6.1 and 8.1), while the former have a projective representation of degree at
most sixteen over fq With the argument cited already for F,, one sees that even for
p=23 only A4, with m<24 can occur in G. This completes the proof of the
lemma. W '

9. 1. Realizations over @*®. The classes of semisimple elements in Eg4(g) and their
centralizers can be found in Table 2 of the paper [14] of Deriziotis. Let C, denote the
class of involutions with centralizer structure Dg, and C; a class of elements of order
D30(9)=9%+9"—q¢°—q*—q*> + q+1. The classes of unipotent elements in Eg(q) were
determined in [36]: let C,:=[z,g9] (this corresponds to the class 44, in [5] and on
p. 405 of [8]).

Proposition 9. 1. For the class structure € =(C,, C,, Cy) of Eg(q), g=p", p=7, we
have n(€)=1.

Proof. An element 7€ C; generates a cyclic Hall subgroup T of G with the
property (x) of §1.2, as can be seen from the centralizer orders in [14]. To this
subgroup, the theory of exceptional characters according to Lemma 1.4 is applied.
Exactly 30=(A5(T): T) of the degrees of unipotent characters of Eg are prime to
IT|=P30(q) ([8], p.484). So together with the exceptional characters all irreducible
characters of G not vanishing on T* are found. The Weyl groups of Eg and Dg are
sufficiently well known by [6], part G, and [20], hence the values of the unipotent
characters y;,..., x30 on the classes C, and C; can be computed with Lemma 1. 8. For
the classes of W(Dg) and the fusion into the classes of W(Eg), see Table 9.1 in [31]. Of
the 30 characters, exactly 18 take nonzero values on C,, while the exceptional
characters for T vanish on that class. The values of the unipotent characters on the
unipotent class C, are read off from the tables in [5], using [28], Theorem 1.5, and
[30]; four of them are zero. This leaves 14 irreducible characters of Eg(g) not vanishing
on any class of the class structure € (see Table 9.2 in [31]).

With the centralizer orders
1%:(@=q"°@ -1 (q*—1) (@°—1) (¢®—1), |%5(1)|=DPs0(q)

and
[€:0)=a>°(@* -V (¢* -1 @* -1 (®—-1)* (-1 @>-1) (g"“-1)

for (g, 0, 1) € € we finally have n(€)=1. R
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Theorem 9. 1.  The groups Eg(q), q=p", p=7, occur as Galois groups over Q@ for
the ramification structure €*=(C,, C,, Cp)* (with the respective classes containing
elements of orders (2, p', ®54(q))). More precisely, a proper field of definition K(q) has
index 30 in the abelian field @ ({ys+47-g5-g4-g3+q+1)-

Proof. With the result of Proposition 9. 1, only the generation of G=Eg(g) by a
triple (g, g, 7)€ (€) is left to be proved. As already mentioned, T:=(t) is a self
centralizing Hall subgroup of G. So H:={g, g, t) is one of the groups in Lemma 1. 3.
Moreover by Lemma 1.6, H is a perfect subgroup of G. Hence it cannot be contained
in the solvable normalizer of the torus T. If H were p-local, by Lemma 1. 7(1) it would
have to lie in a parabolic subgroup of G. But the orders of these are all prime to
|T| = ®34(q). Moreover, T cannot act fixed point freely on an elementary abelian r-group
for r¢{2,3,5, p} by Lemma 1.7(2). The estimates 2-rank (G) <20, 3-rank (G)<12 and
5-rank (G) =10 are obtained by consideration of suitable semisimple subgroups of G. As
0(r) 2 P,,(7)=6568801, H can not be 2,3 or 5-local. (We have 22°—1=1048575,
312 -1=1531440, 5° —1=1953124 and 5'° —1=9765624.)

Consequently, H must be a nonabelian simple group. None of the exceptional
groups of Lemma 9. | has elements of order at least 10° < @,,(7) £ P,,(q) = o(7). So H is
a simple group of Lie type in characteristic p. Only those of Lie rank at most eight need
to be considered (see the proof of Theorem 5. 1). As T < H, we must have ®5,(q) | |K|. A
look at the order formulae for groups of Lie type produces the following list of
possibilities: A4;(¢'%), 4,(¢'°), 44(q°), “4,(a°), "A5(0°), A4(q%), “As(q>), B,(q"%'?), B3(q°),
Bs(q®), C3(@°), Cs(@%), Da(@®), Ds(q%), *Da(q®), *Ds(q®), “Dus(q®?), G,(q°), F4(¢*'*) and
E4(q). But except for E4(g), none of these groups contains a self centralizing subgroup of
order |T| = ®5,(q), so that they cannot be subgroups of G. The statement of the theorem
is now immediate from Lemma 1.1. W

9. 2. Realizations over @. In the groups F,(p) the t.i.-torus of order @,,(p)
contains rational elements of order 13 for infinitely many primes p. While the tori @, (p)
in E4(p) and @,(p) in E,(p) do not contain such rational elements, there exist rational
elements in the torus T of order @;,(p) of Eg(p) for certain congruence classes of p.
Namely, because (A5(T): T)=30 an element of order 31 in T is conjugate to all its
primitive powers, so it is rational. We have 31|®,,(p) exactly if p is a primitive root
modulo 31. This happens for about one fourth of all primes. There is another suitable
t.i.-torus T in Eg(p), of order &,5(p), which contains rational elements of order 31 if p is
the square of a primitive root modulo 31. Thus for about half of all primes (in the sense
of the theorem of Dirichlet), Galois realizations of Eg(p) over @ can be obtained.
To ease notation, let

Pi={peP|p=3 11, 12,13,17, 21, 22, 24 (mod 31)}

and
Z:={peP|p=1,09, 10, 14,18, 19, 20, 28 (mod 31)},

i.e. Z, (resp. &) contains all primes such that 31| ®;,(p) (31| ®,5(p) respectively). Define
C;,:=[1°@3"], where t generates a maximal torus of order @;y(p) if p € # (of order
®,5(p) if p € &, respectively). The other classes are taken from the first section.

Proposition 9. 2. For the class structure €=(C,, C,, C3;) of Eg(p), p=7,
peP U, we have n(€)=1.
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Proof. In the case of p € & this was already proved in Proposition 9. 1, because
then an element of Cj, is contained in a maximal torus T of order ®,,(p). The
irreducible characters of G:= Eg4(p) different from the exceptional characters are constant
on T*. So n(€)=1 follows from the values calculated in the proof of Proposition 9. 1.

In the case p e %, one first convinces oneself with the list of centralizers in [14],
Table 2, that {t)>=:T is a Hall subgroup with the property () of Section 1. 2. Applying
Lemma 1.4, a comparison with the list of degrees of unipotent characters of G in [8],
p. 484, leads to thirty nonexceptional irreducible characters of G not vanishing on Cj;.
Their values on the three classes are calculated in the usual way with Lemma 1. 8, Table
9.1 of [31] and with the help of a computer. The results for those characters not
vanishing on any of the three classes are given in Table 9.3 of [31]. Again we find
n@®=1. N

The proof of generation becomes a bit more delicate in comparison with the first
section, because now we lack the semisimple element of large order. Only the order of
the unipotent elements in the class C, gets larger for increasing p. For small p we
therefore can not expect to prove generation. Let Z:={pe Z, U % | p=43 and p=+127}.

Theorem 9. 2. The groups Eg4(p), pe€ %, occur as Galois groups over @ for the
ramification structure €* =(C,, C,, C3,)* (with the respective classes containing elements
of orders (2, p’, 31)).

Proof. We already know that T:=%;(r) has the structure of a cyclic t.i.-Hall
subgroup of G:=Eg(p). Therefore the assertion of Lemma 1.3 applies to the present
situation.

The order of the Weyl group |W|=2!%35527 of G is not divisible by |T|=231.
Furthermore, for the given congruences, 31 is a primitive divisor of @,,(p) or @,5(p) in
the sense of Lemma 1. 5. This excludes the parabolic subgroups of G as possibilities for
H:={g, 0,1), (0,0,7)€ Z(€). By Lemmas 1.3 and 1.6, H must either be one of the
simple groups of Lemma 9.1 or a r-local subgroup for r € {2, 3, 5}. But 31 does not
divide any 3" —1 for m<12, and so t can not act fixed point freely on an elementary
abelian 3-group. If H is 2- or 5-local with socle E:=Z", then A;(E)/€;(E)=:H is
generated by a (2, p’, 31)-system of elements. Moreover the simple top factor K of a
composition series for H must also have a (2, p’, 31)-system. In particular, the order of
K is divisible by p and 31, and therefore K acts nontrivially on E. This means that p
must divide some 2%%—1, k<4, or 5°*—1, k<3. But the only prime factors of these
numbers greater than 41 are 151 and 829. Both of these do not lie in #. Therefore H is
no local subgroup of G.

Hence H is one of the nonabelian simple groups in Lemma 9. 1. The Lie groups in
characteristic different from p may be excluded by divisibility properties, namely, none
of them has order divisible by 31 and by some p € #. Because 31 does not divide the
order of any A4,, n<23, H is none of the alternating groups in Lemma 9. 1. Only six
sporadic simple groups have orders divisible by 31; they are O'N, Ly, Th, J,, B and M.
Of these, J,, B and M possess elements of order 23 conjugate to 11 or 22 of their
primitive powers, which is only possible in Eg(23), but p=23 was excluded. The only
prime r =43 dividing the orders of the remaining three groups is r =67, but this is not
contained in #. Again, we are left with the groups of Lie type in the same characteristic.
As already mentioned, 31 is a primitive divisor of @,,(p), P,5(p) respectively. The
arguments in the proof of Theorem 9.1 carry over immediately to exclude all cases but
H = Eg4(p). The theorem then follows from Lemma 1.1. W
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§ 10. Concluding remarks

It was already mentioned in the introduction that the only simple groups which
are not known to be Galois groups over abelian number fields are those exceptional
groups of Lie type not treated in this work. This illuminates the importance of the
Rationality Criterion of Matzat and Thompson given in § 1. 1. It might now be asked
whether the remaining cases can be handled with the same criterion. We will give some
heuristic arguments why this may not be possible, at least not so for the Suzuki groups

232(22n+1)= SZ(22"+1).

To explain this, we first have to tell which considerations lead to the choices for
the class structures € in the previous paragraphs. The aim was always the proof of
n(€)=1 and then the application of Lemma 1. 1. The character theoretic formula for
n(€) consists of a sum over all irreducible characters of G, multiplied by a factor,
namely the order of G divided by the three centralizer orders. At least one of the
summands in the character sum is known: the one coming from the trivial character
x =1 obviously takes value 1. Assuming that, for large g, this is the dominant term of
the sum, we have to choose € such that the extra factor also equals 1 for g — oo.
Writing the group order and the centralizer orders as polynomials in g, this means that
the degrees of the centralizer order polynomials must add up to the degree of the
polynomial giving the group order. Indeed, for all examples in this work, the three
classes were chosen in this way, and no case was found with n(€)=1 for an infinite
family of values for ¢ where this condition was not satisfied. Thus, for class structures
according to this heuristic condition, asymptotically the trivial character often yields the
relevant part of the character sum.

The Suzuki groups Sz(22"*!) have a very transparent structure. Their character
table and their maximal subgroups were determined by Suzuki more than 25 years ago.
Thus all ingredients for the application of Lemma 1.1 are known. But one immediately
finds out that the heuristic condition on the centralizer orders of elements from three
classes can only be satisfied if two of the classes contain involutions. But then the
generated group is known to be dihedral. So no “good” class structure exists. In
G:=Sz(q) there exist only six different types of conjugacy classes. This makes it possible
to compute n(€) for all triples of conjugacy classes in G. And, as should be expected by
the above heuristic, the structure constants are polynomials in g of degree at least one.
Furthermore it is not hard to prove that the contribution to these structure constants
coming from proper subgroups are too small to diminish this growth rate for I'(€). (The
parts of n(€) coming from the maximal subgroups of type Sz(2*"*!) are known
inductively; they grow not as quickly as n(€).) From this it can be seen that the Suzuki
groups cannot be realized as Galois groups with the help of Lemma 1.1. A better
criterion is needed.

However in the smallest group, Sz(8), there exists a class structure with class
number one. The notation for the classes is taken from [11].

Theorem 10. 1. The group Sz(8) = 2B, (8) occurs as a Galois group over the field of
index four in @Q((,3) for the ramification structure €* =(24, 134, 13 B)*.

Proof. With [11], p. 28, one has n(€)=1. The only maximal subgroup of Sz(8)
containing elements of order 13 is the normalizer of such an element of type 13-4. But
this cannot have a (2, 13, 13)-system, so the generation is clear as well. W
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The next open case after the Suzuki groups are the Ree groups 2F,(22"*!) in
characteristic 2. For them, not enough is known about the character table at the
moment. Only in the smallest case, the Tits group 2F,(2)', a Galois realization was
found.

Theorem 10. 2. The group Ti=2F,(2) occurs as a Galois group over @(]/1_37) for
the ramification structures € =(2A4, 34, 13A)* and C%¥=(2A4, 54, 13 A)*.

Proof. With the character table on p. 75 of [11] we check n(€,)=n(€,)=1. The
maximal subgroups of G:=2F,(2) are also given there. Only L;(3)-2 and L,(25)-2
possess orders divisible by 13. As the group generated by a triple (g, 0, 7) € 2(€) is
perfect by Lemma 1.6, only the groups L;(3) and L,(25) themselves remain as
candidates. Both contain exactly one class of involutions, which therefore fuses into 2 A4
of G. But because of As~L,(5)<L,(25), L,(25) has a (2,3, 5)-system, while
n(24,3A4, 5A4);=0. This excludes L,(25). The group L,(3) contains elements of order
six which must fuse into 64 of G. But in G we have (6 4)> =2B. So every triple in Z(€))
generates G and the assertion follows.
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