WEIGHTS FOR COMPACT CONNECTED LIE GROUPS
RADHA KESSAR, GUNTER MALLE, AND JASON SEMERARO

ABSTRACT. Let ¢ be a prime. If G is a compact connected Lie group, or a connected
reductive algebraic group in characteristic different from ¢, and ¢ is a good prime for
G, we show that the number of weights of the ¢-fusion system of G is equal to the
number of irreducible characters of its Weyl group. The proof relies on the classification
of f-stubborn subgroups in compact Lie groups.

1. INTRODUCTION
In this paper we prove the following identity, first conjectured in [15]:

Theorem 1. Suppose that G is a compact connected Lie group. Let { be a prime which
is good for G, S a Sylow £-subgroup of G, F = Fs(QG) the corresponding saturated fusion
system and W the Weyl group of G. Then,

w(F) = |Irr(W)].

Here w(F) denotes the number of weights of the ¢-fusion system attached to G (see
Section 2 for precise definitions) and Irr(W) denotes the set of ordinary irreducible char-
acters of W. We recall the definition of good primes later in this introduction. While
the stated identity is rather easy to see for primes not dividing ||, it seems totally
mysterious for the other primes.

The origin of our interest in this theorem is Alperin’s Weight Conjecture (AWC) in
finite group representation theory which relates the number of simple modules of a block
of a finite group algebra over a field of characteristic ¢ to the number of simple, projective
modules of smaller “local” groups. Indeed, via some deep representation theory, it can
be shown that for the principal block of the group algebra of a finite group of Lie type
whose defining characteristic is different from ¢, and under some extra conditions, AWC
is equivalent to an equation of the above type (see [9, Prop. 4.1]). In [9, Thm 1], we
proved this equality for finite groups of Lie type (under the relevant conditions) and
made the surprising discovery that it continues to hold in a broader setting than that
of finite groups, in particular for certain exotic fusion systems on finite /-groups arising
from homotopy fixed point spaces of connected ¢-compact groups. We view Theorem 1,
where the underlying ¢-group is an infinite group, as additional evidence for AWC and
a further indication that it is not restricted to the world of finite groups. We also note
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that Theorem 1 yields the analogous identity for /-weights of fusion systems of connected
reductive algebraic groups in characteristic different from ¢:

Theorem 2. Let ¢ and p be distinct primes. Suppose that G is a connected reductive
algebraic group over Fp such that ¢ is good for G, let S be a Sylow (-subgroup of G,
F = Fs(G) the corresponding saturated fusion system and W the Weyl group of G.
Then,

w(F) = |Irr(W)].

The proof of Theorem 1 proceeds by transferring from the discrete setting to the con-
tinuous one in which the role of centric, radical subgroups in fusion systems is taken over
by (-stubborn subgroups (in the sense of Jackowski-McClure-Oliver [7]) of compact Lie
groups. This leads to a straightforward reduction to the case that the underlying compact
group is simple, at which stage we are able to invoke known classifications of /-stubborn
subgroups [13], [8], [18]. The proof for the classical groups involves counting arguments
similar to those used for [9, Thm 1] which originated in the work of Alperin-Fong [1].

Recall that a prime ¢ is bad for a root system & if Z®/Z ¥ has (-torsion for some closed
subsystem U C ® (see e.g. [12, Def. B.24]). Thus, it is bad for ® if it is so for one of its
indecomposable summands. The bad primes for indecomposable root systems are: none
for type A,, ¢ = 2 for B,,C,, and D,, { = 2,3 for G,, F,, Eg, E7, and ¢ = 2,3,5 for Fg
(see [12, Tab. 14.1]). In particular, all primes ¢ > 7 are good (that is, not bad) for all
types. In Proposition 4.1 we show that the conclusion of Theorem 1 does not hold for
the compact symplectic groups at the bad prime ¢ = 2, and in Propositions 4.5 and 4.6
that it does not hold for G = F}; at the bad prime ¢ = 3, respectively for G = Eg at the
bad prime ¢ = 5. Still in both cases we obtain w(F) < |Irr(WW)|, as conjectured in [15].
In Example 4.3 we observe that for finite reductive groups in bad characteristic we may
have w(F) > |Irr(W)).

Recall that by results of Friedlander (see [4, Thm 3.1] and Section 2.3), the ¢-completed
classifying space (and therefore the ¢-fusion system) of a finite group of Lie type in non-
describing characteristic can be recovered by taking homotopy fixed points under suitable
unstable Adams operations on the ¢-completed classifying space of the corresponding
compact Lie group. It would be desirable to obtain a direct connection between the
weight equation demonstrated in Theorems 1 and 2 and that shown in [9, Thm 1], but as
yet we do not see such a connection either via unstable Adams operations or via Frobenius
morphisms on algebraic groups. In particular, we do not see how to deduce the equation
in the finite setting from the infinite one or vice-versa. Note that our results show that
the number of weights for compact groups does not depend on the isogeny type, while
for example the two isogenous groups SL3(4) and PGL3(4) have five respectively three
3-weights. In another direction, we believe that the purview of Theorem 1 could be
expanded to also cover fusion systems of ¢-compact groups as defined in [5, Sec. 10].

The paper is organised as follows. In Section 2, we recall the relevant background
material. Section 3 contains the proofs of Theorems 1 and 2 and in Section 4, we present
our calculations for bad primes.
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2. PRELIMINARIES

In this section we recall some aspects of the theory of saturated fusion systems associ-
ated to compact Lie groups as set up by Broto, Levi and Oliver in [5]. For subgroups @, R
of a group G, Homg(Q, R) consists of the group homomorphisms from @ to R induced
by conjugation by elements of G, Autg(Q) := Homg(Q, R) = Ng(Q)/Cq(Q) is the group
of G-automorphisms of @, and Outg(Q) = Autg(Q)/Inn(Q) = Ng(Q)/QCs(Q) is the
corresponding group of outer automorphisms. For H < G denote by Fy(G) the category
with objects the subgroups of H, in which the F-morphisms from @) to R are the elements
of Homg(Q, R) for @, R < H, and composition of morphisms is the usual composition of
maps. Let ¢ be a prime number.

2.1. Fusion systems on discrete /-toral groups. A discrete {-toral group is a group
P with normal subgroup P° such that P° is isomorphic to a finite product of copies of
Z/0>° and P/P° is a finite f-group. In particular, any finite ¢-group is a discrete ¢-toral
group. Here P° is characterised as the subset of infinitely divisible elements of P as well
as the minimal subgroup of finite index of P. In particular, P° is characteristic in P. It
is called the identity component of P and P is connected if P = P°.

Let S be a discrete ¢-toral group and let F be a saturated fusion system on S as defined
in [5, Sec. 2]. Following [15], the the number of weights of F is defined by

w(F) =) =(Outz(Q)),
Q
where () runs over a set of representatives of F-conjugacy classes of F-centric, F-radical
subgroups of S, Outz(Q) = Autx(Q)/Inn(Q) is the group of F-outer automorphisms of
@, and z(Outx(Q)) is the number of ordinary irreducible characters of Outz(Q) char-
acters of zero (-defect. Note that by [5, Cor. 3.5, Defn. 2.2], S has only finitely many
classes of F-centric, F-radical subgroups and moreover, the F-outer automorphism group
of any F-centric, F-radical subgroup of S is finite. Thus, w(F) is well defined. Also,
note that if G is a finite group, S is a Sylow ¢-subgroup of G and F = Fs(G) is the corre-
sponding saturated fusion system, then w(F) is the number of Alperin weights associated

to the principal block of kG, k an algebraically closed field of characteristic ¢ (see [10,
Thm 8.14.4)).

Following [5, Sec. 8|, we say a group G “has Sylow ¢-subgroups” if there is a discrete
(-toral subgroup S < G which contains all discrete ¢-toral subgroups of G up to conjugacy.
Such a subgroup, if it exists, is called a Sylow ¢-subgroup of G. Note that the set of Sylow
(-subgroups of G is a single G-conjugacy class. An (-centric subgroup of G is a discrete
(-toral subgroup P < G such that Cg(P) has a Sylow ¢-subgroup, which is Z(P) (and
unique). Equivalently, a discrete ¢-toral P < G is ¢-centric in G if Cg(P)/Z(P) contains
no elements of order /.

2.2. Fusion systems of compact Lie groups. Let G be a compact Lie group. The
following definitions and results are taken from [5, Sec. 9].

e An (-toral group is a compact Lie group whose identity component is a torus and
whose group of components is an {-group. If P is a discrete {-toral subgroup of
G, then the closure P of P in G is an {-toral group.
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e For any ¢-toral group P, Syl,(P) denotes the set of all discrete ¢-toral subgroups P
of P such that P°.P = P, where P° is the identity component of P and P contains
all £-power torsion of P. The elements of Syl,(P) form a single P-conjugacy class.

e We denote by Syl,(G) the set of all /-toral subgroups S of G such that the iden-
tity component S° is a maximal torus of G and S/S° is a Sylow ¢-subgroup of
Na(S°)/S°; Syl,(G) is the set of all discrete ¢-toral subgroups P of G such that
P € Syl,(G) and P € Syl,(P). Any two elements of Syl,(G) are G-conjugate
and each (-toral subgroup of G is contained in an element of Syl,(G). Any two
elements of Syl,(G) are G-conjugate and each discrete (-toral subgroup of G is
contained in an element of Syl,(G) (see [5, Prop. 9.3]). In particular, the elements
of Syl,(G) are Sylow ¢-subgroups of G.

If S < G is a Sylow f-subgroup then by [5, Lemma 9.5], F := Fg(G) is a saturated
fusion system on S.

e An (-stubborn subgroup of G is an (-toral subgroup P of G such that Ng(P)/P
is a finite group which satisfies O,(Ng(P)/P) = 1.

e An (-toral subgroup P < G is called (-centric if Z(P) € Syl,(Cq(P)).

e A discrete f-toral subgroup P of a compact Lie group G is said to be snugly
embedded in G if P € Syl,(P).

The following well-known result is the first step in the proof of Theorem 1 (see also [3,
Sec. 4]).

Lemma 2.1. Let G be a compact Lie group with Sylow (-subgroup S and let F = Fs(G).

(a) For any (-stubborn subgroup P of G, Cg-(P) < Z(P) and if G/G° is an {-group,
then Cq(P) < Z(P), and consequently Outg(P) = Ng(P)/P.

(b) Suppose that P < S is F-centric and F-radical. Then P := P is an (-stubborn
subgroup of G and Outz(P) = Outg(P).

(c) The map P + P induces an injective map from the set of F-classes of F-centric,
F-radical subgroups of S to the set of G-classes of {-stubborn subgroups of G.

(d) If G/G® is an L-group or an {'-group, then the map in (c) is a bijection.

(e) Suppose that G/G® is an (-group. Let F be the orbit category of F and F<" be the full
subcategory whose objects are F-centric, F-radical subgroups of S. Let Ry(G) be the
full subcategory of the orbit category of G whose objects are the (-toral subgroups of
G. There is an equivalence of categories F ~ Ry(G) which for F-centric, F-radical
subgroups P, Q of S sends P to G/P and which sends the F" -morphism from P to Q
induced by conjugation by g € G to the Ry(G)-morphism from G/P to G/Q defined
by P — 2¢7'Q, = € G.

Proof. Part (a) is Lemma 7 of [13]. Let P < S be F-centric and radical. By [5, Lemma 3.2
and Cor. 3.5], P = P°®, where P*® is as defined in Section 3 of [5] and hence by [5,
Lemma 9.9], P is snugly embedded in G. By Lemma 9.4 of [5] and its proof we have
Outz(P) = Outg(P) = Outg(P). Since P is F-centric, by [5, Lemma 8.4], P is (-
centric in G and hence by [5, Lemma 9.6(a),(b)], P is f-centric in G, Ng(P)/P is finite
and PCg(P)/P = Cg(P)/Z(P) is finite of order prime to ¢. On the other hand, since
Outxz(P) = Outg(P) = Ng(P)/PCg(P) and P is F-radical, Oy(Ng(P)/PCq(P)) =1,
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hence Oy(Ng(P)/P) < PCg(P)/P. Since the latter is an ¢'-group, Oy(Ng(P)/P) = 1,
showing that P is /-stubborn. This proves (b).

The assignment P — P := P induces a map from the set of G-classes of discrete
(-toral subgroups of G which are snugly embedded in G to the set of G-classes of ¢-toral
subgroups of G. By [5, Prop. 9.3], this map is a bijection with the inverse being the
map which sends the G-class of an ¢-toral subgroup P of G to the G-class of P, where
P € Syl,(P). Now (c) follows from (b) and the fact that by the definition of F, P, P’ < S
are F-conjugate if and only if P and P’ are G-conjugate.

Now suppose that P < G is a snugly embedded subgroup such that P := P < G is
(-stubborn. From the above, we see that in order to prove (d) it suffices to show that
P is F-centric and F-radical provided that G/G®° is an {-group or an ¢-group. For
this, note that as above since P is snugly embedded in G, Outg(P) = Outg(P) by [5,
Lemma 9.4]. Suppose first that G/G® is an (-group. By (a), Cq(P) = Z(P), hence
Outg(P) = Outxz(P) = Ng(P)/P and by hypothesis Oy(Ng(P)/P) = 1. This shows
that P is F-radical. Also, since Cg(P) < Z(P), P is (-centric in G. Hence by [5,
Lemma 9.6], P is (-centric in G and consequently by [5, Lemma 8.4], P is F-centric. Now
suppose that G/G® is an ¢'-group. We claim that P < G°. Indeed, we have P = P°.P
and P° < G°. On the other hand, every element of P has finite order a power of ¢
and G/G° is an /-group, hence P < G°. This proves the claim. Since G° is normal
in G, P is {-stubborn in G°, hence again by [13, Lemma 7], Cg-(P) = Z(P) and hence
Ce(P)/Z(P) = Cg(P)/Cg-(P) < G/G® is a finite ¢'-group. This shows that Z(P)
contains all torsion elements of ¢-power order of Cg(P) and hence that P is (-centric in
G. Now it follows as in the previous case that P is F-centric. This completes the proof
of (d).

Now suppose that P,Q) < S are F-centric and F-radical. As above, P and () are snugly
embedded in G. By [5, Lemma 9.4(c)], there is a bijection

Inn(Q)\Homg (P, Q) — Inn(Q)\Homg (P, Q)

induced by the canonical map from Homg(P, Q) to Homg(P,Q). On the one hand,
Hom g.. (P, Q) may be identified with Inn(Q)\Homg (P, Q). On the other hand, by (a),

Ce(P) < Z(P) from which it follows that Inn(Q)\Homg (P, Q) may be identified with
Morg,c)(G/P,G/Q). Now (e) follows by (d). O

As an immediate consequence of the previous lemma we get:

Lemma 2.2. Suppose that G is a compact connected Lie group, { a prime, S € Syl,(G)
a Sylow L-subgroup of G, F = Fs(G). Then

w(F) =) 2(Na(P)/P)
P
where P runs over a set of representatives of G-classes of £-stubborn subgroups of G and

2(Ng(P)/P) is the number of irreducible characters of Ng(P)/P of zero (-defect.

2.3. Fusion systems of connected reductive algebraic groups. Let p, £ be distinct
prime numbers and let G be a connected reductive algebraic group over F,. Then since

G has a finite dimensional faithful representation over IF,,, G is a linear torsion group in
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characteristic p (in the sense of [5, Sec. 8]). Hence, by [5, Thm 8.10], G has a Sylow /-
subgroup S and Fg(G) is a saturated fusion system. Also, G is the group of Fp—points of a
connected split reductive algebraic group scheme G over Z. By a theorem of Friedlander—
Mislin [6, Thm 1.4], there is a homotopy equivalence of ¢-completed classifying spaces

BG(C), ~ (BG),.
Further, by the Malcev-Iwasawa theorem (see [16, Thm 32.5]), G(C) has a maximal
compact subgroup K and there is a homotopy equivalence BG(C) ~ BK. Hence,
BK} ~ BG(C), ~ (BG))
and as a consequence of [5, Thms 7.4, 8.10, and 9.10] we obtain the following.

Proposition 2.3. With the above notation there is an isomorphism S = S between
a Sylow (-subgroup S' of K and a Sylow (-subgroup S of G inducing an isomorphism
Fs'(K) = Fs(G) of the corresponding fusion systems.

3. PROOFS OF THEOREM 1 AND THEOREM 2.

We recall some notation from Section 7 of [9]. Denote by C the set of finite sequences
¢ = (c1,...,¢) of strictly positive integers including the empty sequence (). For ¢ € C,
write [¢| :=¢1 + -+ + ¢ and let G, := GL., (¢) x - -+ x GL,(¢). Denote by .A(c) the set of
irreducible characters of G, = GL,, (¢) x - - - x GL, (¢) of the form x; - - - x¢, where each y;
is an extension to GL, (¢) of a Steinberg character of SLc,(¢). Note that |A(¢c)| = (£ —1)".

We recall the description of /-stubborn subgroups in classical groups due to Oliver [13].
As noted already by Oliver this is akin to the Alperin—Fong type classification of /-radical
subgroups of finite general linear and symmetric groups in [1].

Proposition 3.1. Suppose that G is the compact connected Lie group U(n), Sp(n),
SO(2n + 1) or SO(2n), n > 1. Let ¢ be a prime, assumed odd unless G = U(n). If
G # U(n), let X denote the set of functions

fNxC—>N

such that y -, Ol f(y,¢) =n. If G = U(n), let X denote the subset of the above set of

functions f which additionally have the property f(0,()) # 2,4 if ¢ = 2 and f(0,()) # 3 if
¢ = 3. There is a bijection between the set of G-conjugacy classes of £-stubborn subgroups
of G and X satisfying the following: Let P < G be an (-stubborn subgroup whose class
corresponds to f € X.

(a) If G = U(n), then
Na(P)/P = [[(Sps,(0) X Go) 16 (10.

(7:¢)

(b) If G = Sp(n) or G = SO(2n + 1), then
Ne(P)/P = [[(C2 x Spy, (£) X Ge) 1S (1.0).

(7:¢)
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(¢) If G = SO(2n), then Ng(P)/P is isomorphic to the subgroup of

H(C2 X Sp%(é) X G )16y

(7:)
consisting of those elements for which the number of non-trivial entries from the Co
components is even.

Proof. For ¢ € C and a non-negative integer « let R, denote the irreducible subgroup
LY 2 Epey U+ U Ege of U(0FI) defined in [13, Def. 2]. We regard R, as a subgroup
of Sp(£7*I) (respectively SO(207I) via a standard embedding U(£7+) < Sp(er+le)
(respectively U(£*ld) < O(2¢7*). By [13, Thm 6],
NU(MHCI)(R%C)/RW = Sph(ﬁ) x G,
NSp(MHt\)(R'y,c)/R'y,c = CQ X Sp%(f) X Gc,
and
NO(2£W+IC\)(R%C)/R%C =y X Sp2’y(€) X Ge.
Moreover, from the proof of [13, Thm 6] it can be checked that the full inverse image of
SPa, (£) X G in Nggpr+iely (R ) lies in SO(2¢7+<h) and that the generator of the C; factor
lifts to an element of determinant —1 in O(207F!)  specifically to an element of order 2
with —1 as an eigenvalue of multiplicity ¢7*I¢,
If R is a direct product of m copies of R, diagonally embedded via
U(mﬂtl) X oo X U(Wr\tl) < U<mg’v+lt\),
then
NU(mZ’YH“)( )/R (NU £y +le \)( %C)/R%C) 06, = (SpZ’y(e) X Gc) 1S,
where &,, acts by usual permutation of factors. Similarly, regarding R as a diagonally
embedded subgroup via Sp(£7+)™ < Sp(me 1+l then
Nsp(mg—yﬂq)(R)/R = NSp((’YHC\)(R’y,c)/R’y,c 2 6m = (02 X SPQ,Y(K) X Gc) 2 Gm
and regarding R as a diagonally embedded subgroup via O(2£7+)™ < O(2me 1), then
No(zmerlf\)(R)/R = NO(2£W+\C\)(R%C)/R%C 16, = (Ca X Spy, (£) X Ge) 16,

Note that since the space underlying R, in the orthogonal case is even-dimensional, the
elements of &,, lift to elements of determinant 1 in O(2me 1),

Suppose that G = U(n). Then (a) follows from [13, Thms 6 and 8] (see also the last
part of Definition 2 of [13]) with the bijection between X and the G-conjugacy classes of
(-stubborn subgroups sending f € X to the class of

P— HRfvc < HU (OFIEh o < HU )0 < U(n),

where the last 1nclu81on is via a decomposmon of the vector space underlying U(n), and
where

P)/P = HNU(f m+|c\)(R( fvr NH SPy, (€) X Go) 1S f(y,c
(r¢)
proving (a). The proof for the case that G = Sp(n) is entlrely similar.
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Suppose that G = SO(2n) and set G = O(2n). Since G is the connected component
of G of index 2, and ¢ is odd, the set of ¢-stubborn subgroups of G coincides with that
of G. By [13, Thms 6 and 8], the set of G—conjugacy classes of /-stubborn subgroups is
in one to one correspondence with X in the same way as above where

P- H R%"(c%C) < H U(ert\)f(%t) < H O(gmﬂt\)f(%t) < H O(2f(~, c)[/ﬂLICI) < 0(2n)
(7,0 (v:¢) (7,0 (7,0
and
Ne(P)/P = [[(C2 x Spyy (£) X Ge) 1S (1.0).
(v:¢)

From the description above, it follows that Ng(P) is the index 2-subgroup of Ng(P)
described in the statement of (c), and in particular, the G—conjugacy class of P is the
same as the G-conjugacy class of P. This proves (c).

Finally suppose that G = SO(2n+1), and set G = O(2n+1). Then since G = Gx{%I}
and ¢ is odd, the G-conjugacy classes of (-stubborn subgroups of G are the same as the
G-conjugacy classes of (-stubborn subgroups of G. By [13, Thms 6 and 8], the set of
G—conjugacy classes of ¢-stubborn subgroups of G are in one to one correspondence with
X in the same way as above where now

P=[[RI99 < JJUu@)/09 < TT 00#)/09 < 0(2n) x O(1) < O(2n + 1)
(7:¢) (7:¢) (7:¢)
and
Ne(P)/P 2 (J](Ca % Sps, () x Ge) 16 51,)) x O(1).
(7:¢)
Here, note that O(1) = C,. Now the restriction to Ng(P)/P of the canonical surjection
Neg(P)/P — Ng(P)/(P x O(1)) is an isomorphism and this proves (b). O

Theorem 3.2. Suppose that G is the compact connected Lie group U(n), Sp(n), or SO(n),
n > 1. Let ¢ be a prime, assumed odd unless G = U(n), S € Syl,(G) a Sylow £-subgroup
of G, F = Fs(G) the associated fusion system and W the Weyl group of G. Then,

w(F) = |[Irr(W)].
Proof. By Lemma 2.2 we have
w(F) =) 2(Na(P)/P)

where P runs over representatives of G-conjugacy classes of /-stubborn subgroups of G
and z(Ng(P)/P) is the number of irreducible characters of Ng(P)/P of zero ¢(-defect.

Suppose first that G = U(n). Let X be as in Proposition 3.1, let f € X and let P be
an (-stubborn of G corresponding to f. The only characters of zero ¢-defect of GL.(¢) or
Sp,.,(£) are Steinberg characters and Sp,, (£) has a unique Steinberg character which we
denote by x,. Thus by Proposition 3.1(i) and [9, Lemma 9.1}, the weights contributed by
P are in bijection with the set

Wi = {w : U{XA,} x A(c) — {l-cores} with Z lw(p)| = f(7, c)}

(7>¢) PE{xy} xA(c)
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Letting f range over X and identifying {x,} x A(c) with A(c), we see that the set of
weights of F is in bijection with the set W of assignments

w: N x U A(c) — {l-cores}
ceC
such that
YooY 0wy, @) =n.
¢ (1,9)ENXA()
Here note that the restrictions on X in Proposition 3.1(a) do not play a role. By [9,
Lemma 7.15], applied with e = r = 1 and by the argument of the proof of Theorem 4.2 at
the end of Section 7 of [9] it follows that the number of F-weights equals the number of
ordinary irreducible characters of G(1,1,n) = &,,, the Weyl group of U(n). (Observe that
the standing assumption ¢ > 2 in [9, §7] is insubstantial for the combinatorial assertion
of [9, Lemma 7.15].)
Suppose next that G = Sp(n) or SO(2n + 1). Let X be as in Proposition 3.1, let
f € X and let P be an /-stubborn subgroup of G corresponding to f. Since ¢ is odd, all
irreducible characters of Cy are of ¢-defect 0, we obtain from Proposition 3.1(b) and by
[9, Lemma 9.1] that the weights contributed by P are in bijection with the set

Wy = {w ey} x Oy x A(c) — {l-cores} with Z lw(p)| = f(v, c)}
(7:¢) Pe{xy}xC2xA(c)
Letting f range over X and identifying {x,} x C2 x A(c) with Cy x A(c), it follows that
the set of F-weights is in bijection with the set W of assignments

w: N x Cy x UA(C) — {l-cores}

ceC

oo Y 0MMuw(ye ) =n

¢ (7,2,p)ENXC2x.A(c)
As in the previous case by [9, Lemma 7.15] now applied with e = 2, r = 1 and with
W in place of W and by the argument of the proof of Theorem 4.2 of [9] we obtain
that the number of F-weights equals the number of ordinary irreducible characters of
G(2,1,n) 2 W(C,) = W(B,).

Now suppose that G = SO(2n) and let f, Wf be as just defined above. Let C5 act on
Wf via yw(vy,z,p) = w(v,y +z,9) for y € Cy, w € Wf and (v,z,p) € N x Cy x A.
By Proposition 3.1(c) and [9, Lemma 9.1}, applied with No2,)(P)/P in place of G and
Nso2n)(P)/P in place of M, the weights contributed by P are indexed by Z/2Z-orbits of
Wf with each orbit contributing as many weights as the order of the stabiliser of a point
of the orbit. Again, letting f range over all elements of X', we obtain that the F-weights
are indexed by the Z/2Z-orbits of W with each orbit contributing as many weights as the
order of the stabiliser of a point of the orbit, where C5 acts on Wf as above, that is via
yw(y,z, ) = w(y,y+z,¢) fory € Cy, w € Wf and (v, z,¢) € Nx Cy x A. As before,
by [9, Lemma 7.15] now applied with e = 2, »r = 2 and with W in place of W and by
the argument of the proof of Theorem 4.2 of [9] we obtain that the number of F-weights
equals the number of ordinary irreducible characters of G(2,2,n) = W (D,,). O

such that
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Proof of Theorem 1. We use again Lemma 2.2. By [7, Prop. 1.6(i)], any ¢-stubborn sub-
group of G contains Z(G) and a subgroup P < G which contains Z(G) is ¢-stubborn if
and only if P := P/Z(G) is an (-stubborn subgroup of G := G/Z(G). For any P < G
containing Z(G), Ng(P)/P = Ng(P)/P and the Weyl groups of G and G are isomor-
phic. Thus, we may assume that Z(G) = 1 and hence that G is a direct product of
simple compact Lie groups. By [7, Prop. 1.6(ii)], the ¢-stubborn subgroups of a direct
product of compact connected Lie groups are the direct products of /-stubborn subgroups
of the factors and the decomposition into direct factors respects conjugacy, normalisers,
and Weyl groups hence we may assume that G is simple.

Assume first that G is of classical type. Applying the above arguments again, we may
assume that G = U(n), or £ > 3 and G is one of Sp(n), SO(2n + 1) or SO(2n), and we
are done by Theorem 3.2. Now assume that G is an exceptional group. Suppose first
that the Weyl group of G is an ¢-group. Then every ¢-toral subgroup of G is contained
in a maximal torus of G, and by Lemma 2.1(a) the only ¢-stubborn subgroups of G are
the maximal tori and the result is immediate. Thus the only cases left are G = Eg with
(=5 G = FE; with £ =5,7and G = Eg with ¢/ = 7. These are handled by the next
proposition. Note that in all of these cases Sylow /-subgroups of W are cyclic. O

Proposition 3.3. Suppose G = E,, for n € {6,7,8} and let ¢ be a good prime dividing
(W(G)|. Then w(Fi(G)) = |lrv(W)| where F,(G) denotes the (-fusion system of G.

Proof. By [14, Thm B(c)], F;(G) is the fusion system coming from a simple ¢-local com-
pact group, and hence w(F,(G)) = |Irr(W)| by [15, Thm 1.2]. O

Proof of Theorem 2. This is immediate from Proposition 2.3 and Theorem 1. U

4. BAD PRIMES
Proposition 4.1. Suppose that G = Sp(n) withn > 2 and ¢ = 2. Then w(F) < |Irr(W)].

Proof. For v € N and ¢ € F, let S, (respectively S, ) denote the irreducible subgroup
TSP ) Eyer 1+ 0 Bae, (vespectively TS 2 Foey 1- -2 Fae,) of Sp(27H) defined in [13, Def. 2.
By [13, Thms 6 and 8], the G-classes of 2-stubborn subgroups of G are in bijection with
the set of ordered pairs of functions (f, f’) where

f:NxC—=N and f:NxC—N

Z 2F £, ) Z 2 () =

(v,6) (v¢)
and f'((0,())) # 2,4. If P < G is a 2-stubborn subgroup corresponding to (f, f’) then

o Hsf(7 < [ s/

(v+¢)

are such that

and

NG(P)/P = H<GO;'7+2(2) X Gc) l 6]”(77() X H (Sp2,y/(2) X Gc/) l Gf’('y’,c’)'

(7:6) G
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Now GO, (2) = &3 has a unique irreducible character of 2-defect 0 while GO, ,5(2) has
no irreducible characters of 2-defect 0 for v > 1 so the group GO, ,5(2) x G, has a unique
irreducible character of 2-defect 0 if v = 0 and none if v > 1. The group Sp,.,(2) x G
has a unique irreducible character of 2-defect 0 for all v/ > 0. Further, the symmetric
group &,, has one block of 2-defect 0 if m is a triangular number and none otherwise.
From this and [9, Lemma 9.1], it follows that the weight contribution of P is 1 if v =0
and the values of f and f’ are triangular numbers (including 0), and is 0 otherwise. So,
the number of F-weights equals the number of pairs (f, f’) of functions

f:C—N and f:NxC—N

Z 2‘c|f(c) + Z 27’+|t’|f/(7/’ ) =n
¢ (O,¢")

and such that all values of f and f’ are triangular numbers. On the other, hand using the

analysis for the odd ¢ case and noting that when ¢ = 2, A(c) is a singleton and that the

set of 2-cores is in bijection with the set of triangular numbers, we have that the number

of bipartitions of n, i.e., |Irr(W)|, equals the number of pairs (f, f’) of functions

fiNxC—N and f:NxC—N

Z 2P £, Z H () =
(v5¢')

and such that all Values of f and f’ are triangular numbers. Thus, the number of weights
is strictly less than |Irr(W)| for all n > 2. O

Example 4.2. For n = 2, we get 4 weights for Sp(2), namely for ((1);(0,())) with
=1, =0, (0:(0,0)) with f = f' =1, (0); (1, 0)) and ((); (0, (1))) with f = 0, ' = 1,
and so by the proof of Theorem 2, 4 = w(F) < |Irr(W(G))| = 5, where G is a simple
algebraic group over Fp of type Cy and F is its 2-fusion system. Note, however, that if
F is the 2-fusion system of CSp,(q) with v5(¢ — 1) > 2 there are five F-centric radical
subgroups each contributing a single weight (so w(F) = 5), but two of these subgroups
are fused in CSpy(q?).

such that

such that

Example 4.3. Let G be a connected reductive group of symplectic or odd dimensional
orthogonal type over an algebraic closed field of odd characteristic and F' : G — G a
Frobenius map. Then the number w(F) of 2-weights for the principal 2-block of G
equals the number of unipotent conjugacy classes of GI" (see [2, Prop. (2A)] in general).
Now the Springer correspondence (defined by Lusztig [11, Thm 6.5; see also 10.5] for bad
primes) defines an injective map from Irr(7V) to the set of unipotent classes of G, so we
conclude w(F) > |Irr(W)]. In fact, since the Springer correspondence is not surjective in
general we have w(F) > |Irr(W)| for large enough rank. E.g., for G of type By or type
Ce we have w(F) = |Irr(W)| + 1.

Proposition 4.4. Suppose G = Gy. Then w(F) = |Irr(W)| =6 for all primes ¢.

Proof. It ¢ > 3, then we are done by Theorem 3.2. The 2-stubborn and 3-stubborn
subgroups of G are determined in [8, Lemma 3.2]. There are six classes of 2-stubborn
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subgroups P, with N(P)/P isomorphic to 1, &3 (for three of the classes), &3 x &3, and
GL3(2), respectively. Each of these contributes one weight. There are two classes of
3-stubborn subgroups P with N(P)/P isomorphic to Cy x Cy and GLy(3), respectively.
The first contributes 4 weights and the second contributes 2 weights. ([l

Proposition 4.5. Suppose G = Fy and { = 3. Then w(F) = 22 < |Irr(W)| = 25.

Proof. The 3-stubborn subgroups of G are determined in [18, Prop. 3.6]: there are seven
conjugacy classes, with respective automisers Dg, (Cy X Sp,(3)).2 (twice), Spy(3) 22,
GL2(3), SL3(3) and W (Fy). The respective number of weights for those is 5, 4 (twice), 2,
2, 1, 4, adding up to 22. 0

Proposition 4.6. Suppose G = Eg and £ =5. Then w(F) = 103 < |Irr(W)| = 112.

TABLE 1. 5-weights for Eg

N(P)/P 2| NEPyP | 2

(04 X C4)Z 04 28 (SL2(5) X 65)2 Cg 4
(04 X SL2(5)) 02 5 GL2(5) 4
(04 X 65)1 CQ 10 SL3(5> 1
(SLa(5) x SLa(5)): Cy | 4 W (Es) 47

Proof. The 5-stubborn subgroups of G and their automisers are determined in [17, Prop. 2.5,
see Table 1. From this the claim is straightforward. For example, the number of 5-weights
for (SLy(5) x &5): 2 equals 4. Indeed, SLy(5) has a unique character of 5-defect 0, &5
has two and they are stable under the action of Cy as Out(S5) = 1. So each of the two
defect 0 characters of SLy(5) X G5 extends in two different ways. O
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