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Abstract. We complete the determination of the `-block distribution of characters for
quasi-simple exceptional groups of Lie type up to some minor ambiguities relating to
non-uniqueness of Jordan decomposition. For this, we first determine the `-block distri-
bution for finite reductive groups whose ambient algebraic group defined in characteristic
different from ` has connected centre. As a consequence we derive a compatibility be-
tween `-blocks, e-Harish-Chandra series and Jordan decomposition. Further we apply
our results to complete the proof of Robinson’s conjecture on defects of characters.

1. Introduction

A fundamental ingredient in the understanding of the modular representation theory
of a finite (simple) group is the distribution of its irreducible complex characters into
Brauer `-blocks for the primes ` dividing the group order. For example, such information
has recently been used in a crucial way in the proof of several deep conjectures, like the
Alperin–McKay conjecture for the prime ` = 2, or Brauer’s height zero conjecture.

In this paper we contribute to the determination of these `-blocks for quasi-simple
groups, in particular to the case of finite exceptional groups of Lie type for bad primes `.
A parametrisation of these blocks (for simply connected types) in terms of e-cuspidal
pairs had been completed in our previous paper [21]; here we describe the subdivision of
the corresponding Lusztig series along those blocks, first for groups arising from algebraic
groups with connected centre (Theorem 1), and then using Clifford theory for the quasi-
simple groups themselves (Proposition 5.1)

For unipotent blocks this subdivision had already previously been obtained by Broué–
Malle–Michel [3] for large primes `, by Cabanes–Enguehard [5] for good primes and by
Enguehard [11] in general (up to some indeterminacies), while for arbitrary blocks at
good primes ` this question had been studied by Cabanes–Enguehard [6], and Enguehard
[12, 13], albeit in a different formulation. Here, we settle the remaining cases, thereby
arriving at the following result:
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Theorem 1. Let X be a connected reductive group in characteristic p with connected
centre and simple, simply connected derived subgroup, with a Frobenius map F : X→ X.
Let G be an F -stable Levi subgroup of X, let ` 6= p be a prime and s be a semisimple
`′-element in the dual group G∗F . Then for every `-element t ∈ CG∗(s)

F there exists a
map J̄G

t from the set of unipotent `-blocks of CG∗(st)
F to the set of t-twin `-blocks in

E`(GF , s) such that if η ∈ E(CG∗(st)
F , 1) ∩ Irr(b) for a unipotent `-block b of CG∗(st)

F ,
then its Jordan correspondent in E(GF , st) belongs to J̄G

t (b).

This shows that [5, Thm(iii)] and [11, Thm B] continue to hold for bad primes ` and
non-unipotent blocks, up to the small ambiguities around twin blocks, only occurring in
type E8. Let us point out that those also arise in unipotent blocks for which it seems
they have not been resolved in [11], either. Our map J̄G

t is similar to the one introduced
in [11]; it will be explained in Proposition 4.1 and Section 4.2. The meaning of “t-twin
block” will be defined in Section 4.2. In most cases, it is just a single `-block, but in a few
cases in GF = E8(q) with q ≡ −1 mod ` it consists of a union of two blocks, see Table 1.

As a consequence we obtain the following compatibility between `-blocks, e-Harish-
Chandra series and Jordan decomposition; here e is the order of q modulo `, respectively
modulo 4 when ` = 2:

Corollary 2. Let G and ` be as in Theorem 1. If χ, χ′ ∈ Irr(GF ) lie in the same Lusztig
series say E(GF , r), for some semisimple r ∈ G∗F , and the Jordan correspondents of χ
and χ′ in E(CG∗(r)

F , 1) lie in the same unipotent e-Harish-Chandra series, then χ and χ′

lie in the same r`-twin `-block of GF .

On the way we also complete, correct and extend our results in [21]: we deal with
the isolated 5-blocks of E8(q) in Lusztig series indexed by isolated 6-elements that had
been omitted there, showing that all results from [21] carry over (Theorem 6.5), and we
correct information on 3-blocks of E7(q) and E8(q) that arose from a misinterpretation
of results in [11] (Proposition 6.9). In addition, in Proposition 6.3 we parametrise the
isolated blocks in groups of adjoint types E6 and E7, and in Lemma 6.10 we settle the last
open instances from [3] of the decomposition of Lusztig induction of unipotent characters.

Robinson’s conjecture [28] asserts that for any `-block B of a finite group G with defect
group D we have

`def(χ) ≥ |Z(D)| for all χ ∈ Irr(B)

with equality only when D is abelian, where def(χ) := log`(|G|`/χ(1)`) is the defect of χ
and Z(D) denotes the centre of the defect group D. This can be considered as a block-
wise analogue of the well-known fact that χ(1) divides |G : Z(G)| for any irreducible
character χ ∈ Irr(G). We combine our results on block distribution with information on
defect groups from [29] to verify Robinson’s conjecture for isolated 2-blocks of exceptional
type groups and thus complete the proof of this conjecture:

Theorem 3. Robinson’s conjecture holds for all blocks of all finite groups.

The paper is built up as follows. In Section 2 we recall and collect some background
results in particular on Jordan decomposition of characters. In Section 3 we extend some
of our earlier results to the present setting, based upon which, in Section 4 we prove
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our main results Theorem 1 and Corollary 2. In Section 5 we apply Clifford theory to
describe the blocks of quasi-simple groups of types E6 and E7. In Section 6 we correct
and extend results in [21]; in particular we parametrise the isolated `-blocks of simple
groups of adjoint exceptional type and prove the theorems stated in Section 3. Finally,
the proof of Robinson’s conjecture is given in Section 7.

Acknowledgements: Our general approach and several of our proofs are heavily inspired
by the pioneering impressive work of Michel Enguehard, to whom this paper is dedicated.
We thank the anonymous referee for their thorough reading of our paper and the helpful
comments and questions.

2. On Jordan decomposition and block distribution

We refer to [17] for basic notions from Deligne–Lusztig character theory.

2.1. Notation and background results. Throughout this subsection, G is a connected
reductive linear algebraic group over an algebraic closure of a finite field, and F : G→ G
is a Frobenius endomorphism endowing G with an Fq-structure for some prime power q.
By G∗ we denote a group in duality with G with respect to some fixed F -stable maximal
torus of G, with corresponding Frobenius endomorphism also denoted by F . The notions
recalled here make sense independently of whether G has connected centre or not.

For e a positive integer and any F -stable torus T ≤ G, let Te denote its Sylow e-torus
(see e.g. [3] for terminology on Sylow e-theory). An F -stable Levi subgroup L ≤ G is
called e-split if L = CG(Z◦(L)e) or equivalently if L = CG(T) for some e-torus T of G.
A character λ ∈ Irr(LF ) is called e-cuspidal if ∗RL

M≤P(λ) = 0 for all proper e-split Levi
subgroups M < L and any parabolic subgroup P of L containing M as Levi complement,
where ∗RL

M≤P denotes Lusztig restriction. It is known that this property is independent

of the chosen parabolic subgroup P unless possibly if GF has a component of type 2E6(2)
or E8(2) (see [17, Thm 3.3.8]).

Let s ∈ G∗F be semisimple. Choose some Jordan decomposition for GF (as in [10,
Thm 11.5.1]). Then χ ∈ E(GF , s) is e-Jordan-cuspidal if Z◦(C◦G∗(s))e = Z◦(G∗)e and χ
corresponds under Jordan decomposition to the CG∗(s)

F -orbit of an e-cuspidal unipotent
character of C◦G∗(s)

F . If L ≤ G is e-split and λ ∈ Irr(LF ) is e-Jordan-cuspidal, then (L, λ)
is called an e-Jordan-cuspidal pair of G. By [6, Prop. 1.10(ii)], e-cuspidality implies e-
Jordan-cuspidality; a list of situations where the converse is true is given in Remark 2.2
and Section 4 of [22] (see also Theorem 3.1(f)).

2.2. Generalities on Jordan decomposition. Suppose now that G is connected re-
ductive with connected centre. Let (G∗, F ) be dual to (G, F ) with respect to a fixed
duality. Fix a semisimple element s ∈ G∗F , and denote as usual by E(CG∗(s)

F , 1) the
set of unipotent characters of CG∗(s)

F and deviating temporarily from the standard no-
tation, denote by E(GF ,G∗F , s) (usually denoted E(GF , s)) the Lusztig series of Irr(GF )
corresponding to s. Denote by

ΨG,G∗,s : E(CG∗(s)
F , 1)→ E(GF ,G∗F , s)

the inverse of the Jordan decomposition map of [9, Thm 7.1] (see also [31, Thm 2.1]).
For each pair L ≤ G, L∗ ≤ G∗ of F -stable Levi subgroups in dual conjugacy classes,

we fix a duality between (L, F ) and (L∗, F ) induced by the duality between (G, F ) and
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(G∗, F ) as described for example in [10, Prop. 11.4.1] and the ensuing discussion). Note
that if Li (respectively L∗i ), i = 1, 2, are GF -conjugate (respectively G∗F -conjugate) F -
stable Levi subgroups of G (respectively G∗) in dual conjugacy classes, then for any
g∗ ∈ G∗F such that L∗1 = g∗L∗2, there exists g ∈ GF such that L2 = gL1 and such that
conjugation by g and g∗ are dual isomorphisms (in the sense of [17, Sec. 1.7.11] or [31,
Def. 4.4]) from L1 to L2 and from L∗2 to L∗1, respectively. In this situation, if s ∈ L∗F1 ,
then setting t = g∗−1sg∗, [9, Thm 7.1(vi)] gives

(†) ΨL2,L∗2,t
(χ) = g(ΨL1,L∗1,s

(g
∗
χ)) for all χ ∈ E(CL∗2

(t)F , 1).

Here g∗χ is the character of CL∗1
(s)F defined by g∗χ(x) = χ(g∗−1xg∗), x ∈ CL∗1

(s)F , and

similarly, for any τ ∈ Irr(LF
1 ), gτ is the character of LF

2 defined by gτ(y) = τ(g−1yg),
y ∈ LF

2 . Further, if L = L1 = L2, L∗ = L∗1 = L∗2, and g∗ ∈ L∗F then g can be chosen
in LF . In this case, since inner automorphisms act trivially on characters, the above
equation yields ΨL,L∗,t(χ) = ΨL,L∗,s(

g∗χ) for all χ ∈ E`(CL∗(t)
F , 1).

We say that a pair (L, λ), where L ≤ G is an F -stable Levi subgroup and λ ∈ Irr(LF ),
lies below (GF , s) if λ ∈ E(LF ,L∗F , s) for some L∗ containing s and in duality with L.
We say that a GF -class of pairs (L, λ) lies below (GF , s) if some element of the class lies
below (GF , s). Let C∗ := CG∗(s).

Lemma 2.1. There is a bijection between C∗F -classes of pairs (L∗, µ), for L∗ ≤ G∗ an
F -stable Levi subgroup with s ∈ L∗ and µ ∈ E(CL∗(s)

F , 1), and GF -classes of pairs below
(GF , s). It sends the C∗F -class of (L∗, µ) to the GF -class of (L,ΨL,L∗,s(µ)) where L is
dual to L∗.

Proof. The proof is a consequence of (†). We give the details. First note that for any
dual pair L,L∗ of F -stable Levi subgroups with s ∈ L∗ and any µ ∈ E(CL∗(s)

F , 1), the
pair (L,ΨL,L∗,s(µ)) lies below (GF , s). Suppose that (Li, λi), i = 1, 2 are two pairs such
that Li is dual to L∗ and λi = ΨLi,L∗,s(µ). Applying (†) with L∗2 = L∗1 and g∗ = 1 yields
that (L1, λ1) and (L2, λ2) are GF -conjugate. Thus there is a well-defined and surjective
map from the set of pairs (L∗, µ), L∗ an F -stable Levi subgroup of G∗ with s ∈ L∗ and
µ ∈ E(CL∗(s)

F , 1), to the set of GF -classes of pairs below (GF , s) sending the pair (L∗, µ)
to the class of (L,ΨL,L∗,s(µ)) where L is dual to L∗.

Now let (L∗i , µi), i = 1, 2, be such that L∗i is an F -stable Levi subgroup of G∗, s ∈ L∗i ,
µi ∈ E(CL∗i

(s)F , 1). If (L∗1, µ1) and (L∗2, µ2) are C∗F -conjugate, say (L∗2, µ2) = x(L∗1, µ1),

x ∈ C∗F , then applying (†) with g∗ = x−1 and any L1 = L2 dual to the L∗i yields that
(L∗1, µ1) and (L∗2, µ2) have the same image under the above map. Conversely, suppose that
(L∗1, µ1) and (L∗2, µ2) have the same image. To complete the proof it suffices to show they
are C∗F -conjugate. Let L be dual to the L∗i s and set λi = ΨL,L∗i ,s

(µi). By hypothesis,

there exists g ∈ NG(L)F such that λ2 = gλ1 = gΨL,L∗1,s
(µ1). So, by (†), there exists

g∗ ∈ G∗F such that L∗1 = g∗L∗2 and

λ2 = g(ΨL,L∗1,s
(µ1)) = ΨL,L∗2,t

(g
∗−1

µ1)

with t = g∗
−1
sg∗. In particular, λ2 ∈ E(LF,L∗F2 , t). Since by assumption λ2 ∈ E(LF,L∗F2 , s),

t and s are L∗F2 -conjugate, say t = h∗−1sh∗ with h∗ ∈ L∗F2 . Thus, by the remarks after (†)
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applied with h∗ in place of g∗, L∗2 in place of L∗ and g∗−1
µ1 in place of χ,

λ2 = ΨL,L∗2,t
(g
∗−1

µ1) = ΨL,L∗2,s
(h
∗g∗−1

µ1).

Since we also have λ2 = ΨL,L∗2,s
(µ2), it follows that µ2 = h∗g∗−1

µ1. As h∗ ∈ L∗F2 we obtain

(L∗2, µ2) = h∗g∗−1

(L∗1, µ1)

with h∗g∗−1 ∈ C∗F , as required. �

From now on for any pair of dual F -stable Levi subgroups L,L∗ with s ∈ L∗, we revert
to the notation E(LF , s) for E(LF ,L∗F , s) and if s ∈ L∗F we denote by

πL
s : E(LF , s) −→ E(CL∗(s)

F , 1)

the Jordan decomposition inverse to ΨL,L∗,s.
We are going to define some maps between e-Jordan cuspidal pairs which will then

induce maps between `-blocks.

Proposition 2.2. For any e ≥ 1, there is a natural bijection between the C∗F -classes
of unipotent e-cuspidal pairs in C∗ and the GF -classes of e-Jordan cuspidal pairs below
(GF , s). It sends the class of (L∗s, λs) to the class of (L, λ), with L∗ = CG∗(Z

◦(L∗s)e) and
λs = πL

s (λ), where L,L∗ are in duality.

Proof. First of all, we note that the maps M∗ 7→ CG∗(Z
◦(M∗)e), L∗ 7→ CL∗(s) are

mutually inverse bijections between the set of e-split Levi subgroups M∗ of C∗ and
the set of e-split Levi subgroups L∗ of G∗ which contain s and for which additionally
Z◦(CL∗(s))e = Z◦(L∗)e. These bijections are compatible with the action of C∗F and
hence induce inverse bijections between the set of C∗F -classes of e-split Levi subgroups
of C∗ and the set of C∗F -classes of e-split Levi subgroups L∗ of G∗ which contain s and
for which additionally Z◦(CL∗(s))e = Z◦(L∗)e.

Now the composition of the bijection which sends the C∗F -class of (Ls, λs) to the C∗F -
class of (CG∗(Z

◦(Ls)e), λs) with the bijection of Lemma 2.1 yields the result. �

2.3. Compatibility with central products. We state a compatibility result of central
products with various constructions which surely is well-known to the experts. We begin
with a general fact. Recall that an isotypy between algebraic groups X0, X is a morphism
of algebraic groups f : X0 → X with central kernel and with image containing [X,X].

Lemma 2.3. Let f : X0 → X be an isotypy of connected reductive algebraic groups.

(a) The map L 7→ L0 := f−1(L) induces a bijection between the sets of Levi subgroups of X
and of X0. If L and L0 correspond, then L = Z(X)f(L0) and [L,L] = f([L0,L0]). In
particular, f : L0 → L is an isotypy.

(b) Let s ∈ X0 be a semisimple element such that CX0(s) and CX(f(s)) are both connected.
Then the induced map CX0(s) → CX(f(s)) is an isotypy. Suppose that L0 is a Levi
subgroup of X0 containing s and let L ≤ X be the Levi subgroup corresponding to L0

via f . Then the Levi subgroups CL0(s) ≤ CX0(s) and CL(f(s)) ≤ CX(f(s)) correspond
via the induced isotypy between CX0(s) and CX(f(s)).
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Proof. Part (a) is well-known. For the first assertion of (b), it suffices to show that
f(CX0(s)) contains [CX(f(s)), CX(f(s))]. Let X1 := f−1(CX(f(s))). Since [X,X] ≤
f(X0), C[X,X](f(s)) ≤ f(X1). On the other hand, since X = Z(X)[X,X], we have
CX(f(s)) = Z(X)C[X,X](f(s)). Thus, CX(f(s)) = Z(X)f(X1). Since ker(f) is central
in X0, [X1, s] ≤ Z(X0) and the map X1 → Z(X0) sending x ∈ X1 to [x, s] is a group
homomorphism with kernel CX0(s). In particular, X1/CX0(s) is abelian, hence so is
f(X1)/f(CX0(s)) and we obtain

f(CX0(s)) ≥ [f(X1), f(X1)] = [CX(f(s)), CX(f(s))].

The second assertion of (b) follows from part (a). �

Suppose that G = G1G2 is a central product of connected reductive, connected centre
and F -stable subgroups Gi, i = 1, 2. Let G̃ = G1 × G2 and let ϕ : G̃ → G be the
canonical epimorphism given by multiplication. We assume ker(ϕ) is a (central) torus of

G̃. In particular, ϕ is an isotypy. Let ϕ∗ : G∗ → G̃∗ denote a dual isotypy and note that
G̃∗ = G∗1 ×G∗2, with G∗i dual to Gi. For an F -stable Levi subgroup L of G with dual
Levi subgroup L∗ ≤ G∗, let L̃ := ϕ−1(L) be the corresponding Levi subgroup of G̃. Then

L̃ = L1 × L2 with Li an F -stable Levi subgroup of Gi, with dual L̃∗ := Z◦(G̃∗)ϕ∗(L∗)
of the form L∗1 × L∗2, with L∗i dual to Li. Note that the Levi subgroups L∗ ≤ G∗ and
L̃∗ ≤ G̃∗ correspond to each other via ϕ∗.

Let s ∈ L∗F be semisimple. Then ϕ∗(s) = (s1, s2) with si ∈ L∗Fi and CL̃∗(ϕ
∗(s)) =

CL∗1
(s1) × CL∗2

(s2). Further, CL∗(s) and CL̃∗(ϕ
∗(s)) are corresponding Levi subgroups

under the isotypy ϕ∗ : CG∗(s)→ CG̃∗(ϕ
∗(s)) (see Lemma 2.3). So, ϕ∗ induces a canonical

bijection (see [10, Prop. 11.3.8])

̂ : E(CL∗(s)
F , 1)→ E(CL̃∗(ϕ

∗(s))F , 1);

we write α̂ = α1 ⊗ α2 with αi ∈ E(CL∗i
(si)

F , 1). For λ ∈ E(LF , s), set λ̃ := λ ◦ ϕ. Then

λ̃ ∈ E(L̃F , ϕ∗(s)) and is of the form λ1 ⊗ λ2, λi ∈ E(LF
i , si). By properties of Jordan

decomposition [9, Thm 7.1(vi),(vii)], we have that if α = πL
s (λ), then α̂ = πL̃

ϕ∗(s)(λ̃) and

αi = πLi
s (λi), i = 1, 2.

Proposition 2.4. Let L ≤ G be an F -stable Levi subgroup with dual Levi subgroup
L∗ ≤ G∗ and let s ∈ L∗F be semisimple. With the notation above, and denoting by X ′ the
derived subgroup of a group X, we have the following.

(a) (L, λ) is an e-Jordan cuspidal pair for G if and only if (L̃, λ̃) is an e-Jordan cuspidal

pair for G̃, if and only if (Li, λi) are e-Jordan cuspidal pairs for Gi, i = 1, 2.
(b) Suppose that (L, λ) is an e-Jordan cuspidal pair for G. If (L, λ) corresponds to the

unipotent e-cuspidal pair (CL∗(s), α) of CG∗(s) via Proposition 2.2, then (L̃, λ̃) cor-
responds to the unipotent e-cuspidal pair (CL̃∗(ϕ

∗(s)), α̂) of CG̃∗(ϕ
∗(s)) and (Li, λi)

correspond to the unipotent e-cuspidal pairs (CL∗i
(si), αi) of CG∗i

(si) for i = 1, 2.

(c) Let M ≤ G be an F -stable Levi subgroup with L ≤ M and let χ ∈ Irr(MF ). Then,
keeping the notational convention as above, χ is a constituent of RM

L (λ) if and only
if χ̃ = χ1 ⊗ χ2 with χi a constituent of RMi

Li
(λi).
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(d) Let M ≤ G be an F -stable Levi subgroup with dual Levi subgroup M∗ ≤ G∗ containing
s and let β ∈ E(CM∗(s)

F , 1). Suppose that

(CM∗(s)
′, β|CM∗ (s)′F ) and (CL∗(s)

′, α|CL∗ (s)′F )

are CG∗(s)
F -conjugate. Then,

(CM̃∗(ϕ
∗(s))′, β̂|CM̃∗ (ϕ∗(s))′F ) and (CL̃∗(ϕ

∗(s))′, α̂|CL̃∗ (ϕ∗(s))′F )

are CG̃∗(ϕ
∗(s))F -conjugate and consequently,

(CM∗i
(si)

′, βi|CM∗
i

(si)′
F ) and (CL∗i

(si)
′, αi|CL∗

i
(si)′

F )

are CG∗i
(si)

F -conjugate for i = 1, 2.

Proof. Parts (a) and (b) are implicit in [13, Prop. 2.1.5] and part (c) is a consequence
of the commutation of Lusztig induction with ϕ, see [9, Cor. 9.2]. The first assertion of
part (d) follows from Lemma 2.3 and the bijection between unipotent characters induced
by isotypies. The second assertion follows from the first through properties of direct
products. �

2.4. Generalities on block distribution. Let ` be a prime not dividing q and let
e := e`(q) denote the order of q modulo ` if ` is odd and the order of q modulo 4 if
` = 2. We denote by E(GF , `′) the set of irreducible characters of GF lying in a Lusztig
series E(GF , s) for some semisimple `′-element s ∈ G∗F . Recall from [21, Def. 2.4] that
a character χ ∈ E(GF , `′) is said to be of central `-defect if |χ(1)|`|Z(G)F |` = |GF |`
or equivalently if the `-block of GF containing χ has a central defect group (see [21,
Prop. 2.5(c)]) and χ is said to be of quasi-central `-defect if some (and hence any) character
of [G,G]F covered by χ is of central `-defect. By [21, Prop. 2.5(b)], if χ is of central `-
defect, then it is of quasi-central `-defect. For unipotent characters, the converse holds
and the terms “quasi-central `-defect” and “central `-defect” are used interchangeably:

Lemma 2.5. Any χ ∈ E(GF , 1) of quasi-central `-defect is of central `-defect and is also
e-cuspidal.

Proof. Let b be the `-block of GF containing χ. By [21, Prop. 2.5(f)], χ is the unique
unipotent character in its `-block. On the other hand, by [11, Thms A and A.bis], Irr(b)∩
E(GF , 1) contains the e-Harish-Chandra series of GF above some e-cuspidal unipotent
pair (L, λ) with λ of central `-defect. But this means that L = G and λ = χ. �

We record here another fact that will be used later.

Lemma 2.6. Suppose that all components of [G,G] are of classical type and let χ ∈
E(GF , 1). If χ is of (quasi)-central 2-defect, then G is a torus.

Proof. By [4, Thm 13] and the table in [11, p. 348], the principal 2-block is the only
unipotent 2-block of GF . Hence the hypothesis implies that the principal 2-block of GF

has central defect groups, that is, the Sylow 2-subgroups of GF are contained in Z(GF ).
The result follows. �
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Now fix s ∈ G∗F a semisimple `′-element. The following is an extension of the inductive
argument given on Page 367 of [11]. For an F -stable subgroup H of G we denote by d1,H

the decomposition map on the set of class functions of HF defined by d1,H(χ)(x) := χ(x)
if x ∈ HF is `-regular and d1,H(χ)(x) := 0 otherwise. Note that we are diverging from

the more customary (but also more clumsy) notation d1,HF
.

Lemma 2.7. Let t ∈ CG∗(s)
F be an `-element and χ ∈ E(GF , st). Then there exists

γ ∈ E(GF , s) with 〈d1,G(χ), γ〉 6= 0.

Proof. The regular character of GF is a linear combination of class functions of the form
RG

T (regTF ), where T runs over the F -stable maximal tori of G and regTF is the regular
character of TF (see [10, Cor. 10.2.6]). Hence, there exists some F -stable maximal torus
T ≤ G such that

a := ∗RG
T (χ)(1) =

〈∗RG
T (χ), regTF

〉
=
〈
χ,RG

T (regTF )
〉
6= 0.

Let ∗RG
T (χ) =

∑
σ,τ aσ,τστ where σ runs over Irr(TF )`′ and τ runs over Irr(TF )` and note

that a =
∑

σ,τ aσ,τ . Let σ ∈ Irr(TF )`′ with
∑

τ aσ,τ 6= 0. For any τ ∈ Irr(TF )`, we have

d1,T(στ) = d1,T(σ) and hence〈
d1,G(χ), RG

T (σ)
〉

=
〈
d1,T(∗RG

T (χ)), σ
〉

=
1

|TF
` |
∑
τ

aσ,τ 6= 0.

Thus, there is a constituent γ of RG
T (σ) with

〈
d1,G(χ), γ

〉
6= 0. By the above displayed

equation, we have aσ,τ 6= 0 for some τ ∈ Irr(TF )`, implying γ ∈ E(GF , s) as desired. �

Now assume G has connected centre. For any `-element t ∈ C∗F recall the Digne–
Michel Jordan decomposition

πG
st : E(GF , st) −→ E(CG∗(st)

F , 1)

discussed above. For any maximal torus T∗ ≤ CG∗(s) denote by ŝ ∈ Irr(TF ) the linear
character associated to s by duality [7, (8.14)].

Lemma 2.8. Let t ∈ CG∗(s)
F be an `-element and χ ∈ E(GF , st). Let T∗ ≤ CG∗(st)

be a maximal torus such that 〈πG
st (χ), R

CG∗ (st)
T∗ (1)〉 6= 0 and T∗ is CG∗(st)

F -conjugate to
any of its G∗F -conjugates contained in CG∗(st). Then χ lies in the same `-block of GF

as some constituent of RG
T (ŝ).

Proof. Since 〈πG
st (χ), R

CG∗ (st)
T∗ (1)〉 6= 0, by the properties of Jordan decomposition we have

〈χ,RG
T (ŝt)〉 6= 0, for T dual to T∗. Now under our assumption on T∗, by [11, Lemma 21]

we have
∗RG

T (χ) = m
∑
w

ŝt
w

for w ranging over certain elements of the relative Weyl group of T, including w = 1, and
where m 6= 0. Then〈

d1,G(χ), RG
T (ŝ)

〉
=
〈
d1,T(∗RG

T (χ)), d1,T(ŝ)
〉

= m ·
∑
w

〈
d1,T(ŝ)w, d1,T(ŝ)

〉
6= 0.

Thus χ lies in the `-block of some constituent of RG
T (ŝ). �
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The next result uses the notation Ga, Gb introduced in [5, Not. 2.3]. Recall that
Z◦(G) ≤ Ga while Gb is semisimple.

Lemma 2.9. Suppose that Z(G) is connected, G = Ga and that ` is odd. Let s ∈ G∗F be
a semisimple `′-element. Then there is a unique GF -conjugacy class of e-Jordan cuspidal
pairs below (GF , s) and a unique `-block in E`(GF , s), say b. Further, denoting by (L, λ)
an e-Jordan cuspidal pair below (GF , s), every element of Irr(b)∩E(GF , s) is a constituent
of RG

L (λ).

Proof. We have CG∗(s)a = CG∗(s) (see for instance remark after [5, Not. 2.3]), hence by
[5, Prop. 3.3], there is only one class of unipotent e-cuspidal pairs in CG∗(s). The first
assertion now follows from Proposition 2.2. The second assertion is a consequence of the
first, the main theorem of [6], and the fact that an e-cuspidal pair is also e-Jordan cuspidal
(see [6, Sec. 1.3]). Here we note that in [6] it is assumed that ` ≥ 5, but this is not necessary
for the case that we are considering (the second assertion can also be obtained from the
main theorem of [5] in combination with the Bonnafé–Rouquier Jordan decomposition
theorem since CG∗(s) is a Levi subgroup of G∗ in our case). The final assertion follows
from the main theorem of [5] applied to CG∗(s) and the fact that Jordan decomposition
commutes with Lusztig induction in groups of type A (see [17, Thm 4.7.2]). �

For later use, we record here the following structural result.

Proposition 2.10. Let H be connected reductive with [H,H] simple, F : H → H a
Frobenius map, G ≤ H an F -stable Levi subgroup and let s ∈ G∗ be semisimple. If
CG∗(s) has an e-split Levi subgroup, e ∈ {1, 2}, whose F -fixed points have a component
of type 3D4, then one of the following hold:

(1) [H,H] = [G,G] is of type D4, F induces triality and s is central; or
(2) H is of exceptional type, and either G is also of exceptional type En, 6 ≤ n ≤ 8, or

GF has a component of type 3D4 and s is central in G∗ or non-isolated.

Proof. Clearly we may replace H by [H,H] and G by G∩[H,H]. Now first assume H is of
classical type. Let T0 be a maximally split torus of H, with Weyl group W , set of simple
reflections S, and F acting by σ on W . Then there is some subset I ⊆ S and w ∈ NW (WI)
such that G has Weyl group WI and F acts by wσ on WI . Now by the explicit description
in [20, p. 71] the normalisers of parabolic subgroups of W of type Dn do not induce a
triality automorphism on any simple factor, so nor does wσ unless σ itself is triality. Thus,
except we are in the excluded case, G is a product of groups of classical type such that
GF has no component of type 3D4. But the centralisers of semisimple elements in finite
classical groups only possess classical components (see e.g. [16, Sect. 1]), and their e-split
Levi subgroups then have the same property.

Now assume H is of exceptional type and CG∗(s) has an e-split Levi subgroup whose
F -fixed points have a component of type 3D4. If G itself is not of exceptional type, then
by rank considerations it has at most one factor of type Dn, where 4 ≤ n ≤ 8, and type A-
factors otherwise. In fact, there must be exactly one type Dn-factor since Levi subgroups
of element centralisers in type A-groups do not have 3D4-components. The F -fixed points
of the unique Dn-factor are either finite orthogonal groups, but as seen above these do
not possess semisimple elements with suitable Levi subgroups, or we have n = 4 and F
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induces triality, so GF has a component of type 3D4. As all other components of G are
of type A, their only isolated elements are central, whence our claim. �

Lemma 2.11. Let G be simple of type D4 in characteristic different from 3 and F : G→
G with GF = 3D4(q). Let T ≤ G be the centraliser of a Sylow e3(q)-torus. Then for all
3-elements 1 6= t ∈ G∗F , (T, 1) is the unique unipotent e3(q)-cuspidal pair of CG∗(t) (up
to conjugation).

Proof. By inspection of [8, Tab. 2.2], for all 3-elements t 6= 1, CG∗(t) = CG∗(t)a contains
a conjugate of T. The claim follows. �

3. On the `-block distribution of `′-characters

In this section we formulate some straightforward extensions of results obtained in our
predecessor papers [21] and [22] to the following setting: let X be connected reductive with
connected centre such that [X,X] is simple of simply connected type, with a Frobenius
map F : X → X with respect to an Fq-structure. Let G ≤ X be an F -stable Levi
subgroup. Thus, in particular, all centralisers of semisimple elements in G∗ are connected.
Let 6̀ |q be a prime and set e = e`(q).

Recall that a character χ ∈ E(GF , `′) is called e-Jordan quasi-central cuspidal if χ
is e-Jordan cuspidal and its Jordan correspondent is of quasi-central `-defect (see [22,
Def. 2.12]). An e-Jordan quasi-central cuspidal pair of G is a pair (L, λ) such that L is
an e-split Levi subgroup of G and λ ∈ E(LF , `′) is an e-Jordan quasi-central cuspidal
character of LF .

3.1. Parametrisation of `-blocks in connected centre groups. Parts (a), (b) and (c)
of the following extend Theorems 1.2(a) and 1.4 of [21] whilst parts (d) and (e) were
implicit from the computations made in [21] (where X was assumed simple of simply
connected exceptional type):

Theorem 3.1. Assume G = X above and that ` is bad for G, and let s ∈ G∗F be an
isolated semisimple `′-element. Then:

(a) There is a natural bijection bGF (L, λ)←→ (L, λ) between `-blocks of GF in E`(GF , s)
and e-cuspidal pairs (L, λ) below (GF , s) of quasi-central `-defect.

(b) The sets E(GF , (L, λ)), where (L, λ) runs over a set of representatives of the GF -
classes of e-cuspidal pairs below (GF , s), partition E(GF , s).

(c) GF satisfies an e-Harish-Chandra theory above each e-cuspidal pair (L, λ) below (GF, s).
(d) If two e-cuspidal pairs below (GF , s) define the same block of GF , then their Jordan

correspondents define the same unipotent block of CG∗(s)
F , up to twins.

(e) For any e-cuspidal pair (L, λ) below (GF , s), Jordan decomposition commutes with
RG

L up to twins.
(f) Let L be an F -stable Levi subgroup of G such that s ∈ L∗ and let λ ∈ E(LF , s). Then

(L, λ) is an e-Jordan cuspidal pair of G if and only if (L, λ) is an e-cuspidal pair
of G. Further, if (L, λ) is an e-Jordan cuspidal pair of G, then (L, λ) is e-Jordan
quasi-central cuspidal if and only if λ is of quasi-central `-defect.

We will explain how this can be derived from the results of [21] in Section 6.4. The
definition of twins will be given in Section 4.2.

We also need the following extension of Theorem A(a) and (b) and Theorem 3.4 of [22]:
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Theorem 3.2. Let X be as above, and G ≤ X an F -stable Levi subgroup.

(a) For any e-split Levi subgroup M of G and any `-block c of MF , there exists a block b
of GF such that for every µ ∈ Irr(c)∩E(MF , `′), all irreducible constituents of RG

M(µ)
lie in b.

(b) For any e-Jordan-cuspidal pair (L, λ) of G such that λ ∈ E(LF , `′), there exists a
unique `-block bGF (L, λ) of GF such that all irreducible constituents of RG

L (λ) lie in
bGF (L, λ).

(c) The map Ξ : (L, λ) 7→ bGF (L, λ) induces a surjection from the set of GF -classes of
e-Jordan-cuspidal pairs (L, λ) of G with λ ∈ E(LF , `′) to the set of `-blocks of GF .

(d) The map Ξ restricts to a surjection from the set of GF -classes of e-Jordan quasi-
central cuspidal pairs (L, λ) of G with λ ∈ E(LF , `′) to the set of `-blocks of GF .

Again, the proof will be given in Section 6.4. For future use, we also note:

Proposition 3.3. Let X,G be as above and let s ∈ G∗F be a semisimple `′-element.
If there is a unique class of unipotent e-cuspidal pairs of C := CG∗(s) of central defect,
then E`(GF , s) is a single `-block. In particular, if ` = 2 and C has only components of
classical type then E2(GF , s) is a single 2-block.

Proof. Suppose that there is a unique class of unipotent e-cuspidal pairs of central defect
of C = CG∗(s). Then by Lemma 2.5 and Proposition 2.2, there is a unique GF -class of
e-Jordan quasi-central cuspidal pairs below (GF , s). By Theorem 3.2(d), for every `-block
b in E`(GF , s), there is a GF -class of e-Jordan quasi-central cuspidal pairs (L, λ) of GF

with λ ∈ E(LF , `′) such that b = bGF (L, λ). Since bGF (L, λ) contains the irreducible
constituents of RG

L (λ) and since Lusztig induction preserves Lusztig series (see, e.g., [17,
Prop. 3.3.20]), the GF -class of (L, λ) lies below s. This proves the first assertion. If ` = 2
and all components of C are of classical type, the principal block is the only unipotent
2-block of CF (see for instance [7, Thm 21.14])). Hence, by Theorems A and A.bis of [11]
there is only one CF -class of unipotent e-cuspidal pairs of C of central 2-defect. �

3.2. e-Cuspidal pairs below (GF , s). In this subsection and elsewhere, we will freely
use the fact if G is as above, s ∈ G∗ is an `′-element and t ∈ CG∗(s) is an `-element, then
CG∗(st) = CCG∗ (s)(t), and therefore also that CCG∗ (s)(t) is connected if in addition s is
semisimple.

Lemma 3.4. Let X,G be as above, s ∈ G∗F a semisimple `′-element and assume that
[X,X] is of exceptional type. Then for any `-element t ∈ CG∗(s)

F , if (L∗t , λt) is a unipotent
e-cuspidal pair of CG∗(st) then L∗t is a Levi subgroup of CG∗(s).

Proof. We argue by induction on dim G. Let G∗1 ≤ G∗ be a minimal (F -stable) Levi
subgroup containing CG∗(s). If G∗1 is proper, then by induction L∗t is a Levi subgroup of
CG∗1

(s) and thus of CG∗(s). Thus we may assume s is isolated. Moreover, we may assume
that ` is bad for CG∗(s), since otherwise CG∗(st) is already a Levi subgroup of CG∗(s)
(see [7, Prop. 13.16]) whence so is L∗t . Then from the list of isolated elements (see [1,
Prop. 4.9 and Tab. 3] it transpires that for s non-central only two configurations in G of
type E8 remain to be considered: either ` = 3 and CG∗(s) is of type E7A1, or ` = 2 and
CG∗(s) is of type E6A2. For these, we may conclude using the list of unipotent e-cuspidal
pairs (see [3, Tab. 1]). If s is central, again by induction we may assume t is isolated
in G∗. Again from the list of isolated elements, no case arises. �
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Following Enguehard [11] we introduce a relationship between unipotent e-cuspidal
pairs.

Definition 3.5. Let H denote a connected reductive group with a Frobenius map F with
respect to an Fq-structure and let H′ be an F -stable connected reductive subgroup of H
of maximal rank. Let (L, λ), (L′, λ′) be unipotent e-cuspidal pairs of H, H′ respectively.
We write

(L′, λ′) ∼ (L, λ)

if ([L,L], λ|[L,L]F ) and ([L′,L′], λ′|[L′,L′]F ) are HF -conjugate.

The following is a slight variation on [11, Prop. 17] (for which no proof was given).
Note that by the table of [11, p. 348], 3D4[−1] (respectively φ2,1) is the unique unipotent
1-cuspidal (respectively 2-cuspidal) character of 3D4(q) of quasi-central 3-defect.

Proposition 3.6. Let X and G be as above. Let s ∈ G∗F be a semisimple `′-element
and let C = CG∗(s). Let t ∈ CF be an `-element and let (Lt, λt) be a unipotent e-cuspidal
pair in CC(t) of quasi-central `-defect.

(a) If there exists an e-split Levi subgroup M of C with [M,M] = [Lt,Lt], then there exists
a (unique) CF -class of unipotent e-cuspidal pairs (L, λ) in C with (Lt, λt) ∼ (L, λ) as
in Definition 3.5.

(b) If there exists no e-split Levi subgroup M of C with [M,M] = [Lt,Lt], then ` = 3 (so
e ∈ {1, 2}), [Lt,Lt]

F is of type 3D4 and there exists a unique CF -class of e-split Levi
subgroups L of C with [L,L]F = D4(q). Define a unipotent e-cuspidal character λ of
LF by
• λ = D4 when e = 1 and λt = 3D4[−1],
• λ = φ13,02 when e = 2 and λt = φ2,1.

All pairs (L, λ) are also of quasi-central `-defect.

Definition 3.7. In either case of Proposition 3.6 we write (Lt, λt)→t (L, λ).

Proof. Suppose that (L, λ) and (L′, λ′) are unipotent e-cuspidal pairs of C such that
([L,L], λ|[L,L]F ) and ([L′,L′], λ′|[L′,L′]F ) are CF -conjugate. We claim that (L, λ) and (L′, λ′)

are CF -conjugate. Indeed, let x ∈ CF with ([L′,L′], λ′|[L′,L′]F ) = x([L,L], λ|[L,L]F ). By [5,

Prop. 1.7(iii)], there exists c ∈ C◦C(xL∩L′)F with L′ = cxL. Since [L′,L′] = x[L,L] ≤ xL∩L′,
we have cxλ|[L′,L′]F = xλ|[L′,L′]F = λ′|[L′,L′]F , and consequently by [5, Prop. 3.1], cxλ = λ′.
It follows that (L′, λ′) = cx(L, λ), proving the claim. We note that this argument is
essentially lifted from the discussion after Definition 3.4 of [5].

Now, suppose that we are in case (a). Let L be an e-split Levi subgroup of C with
[L,L] = [Lt,Lt] and let λ be the (unique) unipotent character of LF with λ|[L,L]F =
λt|[Lt,Lt]F . Then λ is e-cuspidal (see [5, Prop. 3.1] and the paragraph following it) and
clearly (L, λ) ∼ (Lt, λt). The uniqueness assertion of (a) follows from the paragraph
above.

Suppose that ` is odd, good for C and ` > 3 if CF has no component of type 3D4. Then
we are in case (a) by [5, Prop. 3.5]. Note that in loc. cit. the element t is in the dual
of the group about which the assertion is being made, but one can check that the proof
works exactly in the same way in the situation we are considering.
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Suppose that ` = 3 and CF has a component of type 3D4. Then by Proposition 2.10,
X is of exceptional type or XF is of type 3D4, and by rank considerations C has a single
component of type D4 and all other components of C are of type A. Write C = C1C2

where C1 has type D4 and C2 is the product of all other components of [C,C] with Z◦(C).
Since Z(C1) is a 2-group, t = t1t2 with ti ∈ CF

i and CC(t) = CC1(t1)CC2(t2). Moreover
Lt = M1M2 with each Mi being e-split in CCi

(ti), and λt covers the irreducible character
µ1µ2 of CC1(t1)FCC2(t2)F where µi is a unipotent e-cuspidal character of Mi (this follows
for instance from [5, Sect. 3.1] and the fact that unipotent e-cuspidal pairs behave well
under taking direct products (see for instance Proposition 2.4 and note that e-Jordan
cuspidality and e-cuspidality coincide in the unipotent case). By Lemma 2.11, there is an
e-split Levi subgroup of CC1(t1), say L1 with [L1,L1] = [M1,M1] (we take L1 = M1 = T
where T is as in the lemma). By the argument in the preceding paragraph, there is an
e-split Levi subgroup of CC2(t2), say L2 with [L2,L2] = [M2,M2]. Then L = L1L2 is an
e-split Levi subgroup of C with [L,L] = [Lt,Lt] and we are in case (a).

Now suppose that ` = 2 and all components of Lt are of classical type. By Lemma 2.6,
Lt is a torus and we may take L to be the centraliser of the corresponding Sylow e-torus
of CF (see [22, Lemma 3.17]).

In the remaining cases, recall that we need to prove the following: if either ` 6= 3
or [Lt,Lt]

F is not of type 3D4, then there exists an e-split Levi subgroup L of C with
[L,L] = [Lt,Lt], and that if ` = 3 and [Lt,Lt]

F is of type 3D4, then C has an e-split Levi
subgroup L with [L,L]F of type D4. If C is contained in a proper Levi subgroup G1 of G∗

then by induction on dim G there exists an e-split Levi subgroup LG1 of CG∗1
(s) = C as

wanted, and we can take L := LG1 in C. Hence, we may assume that s is isolated in G∗.
Let G1 := CG∗(Z(Lt)e), an e-split Levi subgroup of G∗ containing Lt. Then, CG1(s)

is e-split in C. If G1 is proper in G∗, then by induction on dim G there exists an e-split
Levi subgroup LG1 of CG1(s), (which is then also e-split in C) as wanted, and we can
take L = LG1 . Now assume G1 = G∗. Then since (Lt, λt) is e-cuspidal in CC(t), so in
particular Lt is e-split in CC(t), we have

Lt = CCC(t)(Z(Lt)e) = CC(t) ∩ CG∗(Z(Lt)e) = CC(t) ∩G∗ = CC(t).

By the discussion above, we may also assume now that either ` = 2, or ` = 3 and
(C, F ) has a factor of exceptional type, or ` = 5, G is of type E8 and s = 1. So we
have e ∈ {1, 2, 4}. Using Chevie [27] we can enumerate all possible candidates for Lt, that
is, all rational types of Levi subgroups M of the various C having e-cuspidal unipotent
characters of quasi-central `-defect. Here, note that by Lemma 3.4, Lt is a Levi subgroup
of C. It turns out that we are in one of three cases when e = 1 (the cases e = 2, and
e = 4 in E8, being entirely similar):

• The only non-trivial `-elements in Z(M)F are involutions, but M is not the cen-
traliser of an involution in any of the possible C.
• Z(M)e > Z(C)e (here, as earlier, an index e on an F -stable torus denotes its

Sylow e-subtorus) and so CG∗(Z(M)e) < G∗, and we may conclude by induction,
see above.
• M has rational type 3D4(q)Φk

3 for k = 1, 2, where Z(M)F contains non-trivial
`-elements only when ` = 3.
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In the last case, C has a factor of type En, n ≥ 6, and so does possess a 1-split Levi
subgroup of type D4, unique up to conjugacy, whence we end up in case (b). By explicit
enumeration, for ` = 3 whenever (Lt, λt) is a unipotent e-cuspidal pair in CC(t) such
that Lt has a factor of type 3D4, then [Lt,Lt]

F is simple of type 3D4. Also, it turns
out that none of the relevant C do possess an e-split Levi subgroup, e ∈ {1, 2}, with a
component of type 3D4. The statement about quasi-central defect is obvious if we are not
in situation (b); in the latter case it can be checked directly. �

Remark 3.8. In [11, Prop. 17] it is claimed that if one of (Lt, λt), (L, λ) is of central
`-defect, then so is the other. This is easily seen to not hold in two of the four exceptional
cases listed there. It is also stated that Lt is “deployé” (split), but this seems to be a
misprint as it can easily be seen to be wrong in general. Let us add that neither is Lt an
e-split Levi subgroup of C, in general.

4. The block distribution

In this section we prove Theorem 1. Several of the results presented here, or variants
thereof, were stated in or are inspired by the work of Enguehard [11] on unipotent blocks
for bad primes. Since [11] does not always give proofs, and some of its statements are
obviously inaccurate, we have decided to provide some of the missing proofs (and indicate
where we believe [11] is incorrect). We take the opportunity to point out that, in partic-
ular, Theorems A and A.bis of [11] seem not correct for ` = 2 when e is not the order of
q modulo 4.

Throughout this section, we fix the following notation:

• Let X be a connected reductive group in characteristic p with connected centre
and simply connected simple derived subgroup with a Frobenius map F : X→ X,
and let G be an F -stable Levi subgroup of X;
• let ` be a prime not dividing q and e := e`(q); and
• let s ∈ G∗F be a semisimple `′-element and set C∗ := CG∗(s).

Note that C∗ is connected, as all centralisers of semisimple elements in G∗, since G has
connected centre. For any `-element t ∈ C∗F recall the Digne–Michel Jordan decomposi-
tion

πG
st : E(GF , st) −→ E(CG∗(st)

F , 1) = E(CC∗(t)
F , 1)

already discussed in Section 2. For (L, λ) an e-Jordan cuspidal pair of G below (GF , s) we
write bGF (L, λ) for the corresponding `-block of GF containing all constituents of RG

L (λ)
(see Theorem 3.2).

4.1. The map J̄G
t . We start by defining the map J̄G

t in Theorem 1, based on the relation
→t introduced in Proposition 3.6 (see Definition 3.7).

Proposition 4.1. Let t ∈ C∗F be an `-element.

(a) The relationship →t on e-cuspidal pairs defined in Proposition 3.6 induces a map JG
t

from the set of CG∗(st)
F -classes of unipotent e-cuspidal pairs of quasi-central `-defect

in CG∗(st) to the set of GF -classes of e-Jordan quasi-central cuspidal pairs in G below
(GF , s).
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(b) This induces a map J̄G
t from the set of unipotent `-blocks of CG∗(st)

F to the set of
`-blocks of GF in E`(GF , s).

Proof. Let (L∗t , λt) be a unipotent e-cuspidal pair of quasi-central `-defect in C∗t :=
CG∗(st) = CC∗(t). By Proposition 3.6 the C∗Ft -class of (L∗t , λt) gives rise to a unique
C∗F -class of unipotent e-cuspidal pairs (L∗s, λs) in C∗, of quasi-central defect. Then the
bijection in Proposition 2.2 provides a GF -class of e-Jordan quasi-central cuspidal pairs
(L, λ) in G below (GF , s) and we define the image of the class of (L∗t , λt) under JG

t to be
the class of (L, λ).

For (b) let b be a unipotent `-block of C∗Ft . By [11, Thm A and A.bis] there exists
a unipotent e-cuspidal pair (L∗t , λt) in C∗t , of quasi-central `-defect and unique up to
C∗Ft -conjugacy such that b = bC∗Ft (L∗t , λt). The map JG

t from (a) provides an e-Jordan

quasi-central cuspidal pair (L, λ) in G below (GF , s), unique up to GF -conjugacy, and
by Theorem 3.2 this determines an `-block J̄G

t (b) := bGF (L, λ) of GF in series s. �

We note that when s = 1, the map J̄ Ḡt above coincides with the map J̄G,F
t of [11,

Thm B] (where our semisimple `-element t is denoted s).

Remark 4.2. In the setting of Proposition 4.1 let (L∗t , λt) be a unipotent e-cuspidal pair
in CG∗(st) = CC∗(t). If L∗t is an e-split Levi subgroup of G∗ with dual Lt ≤ G, then by
Proposition 3.6(a), JG

t sends the CG∗(st)
F -class of (L∗t , λt) to the GF -class of (Lt, λ

′) for
some λ′ ∈ E(LF

t , s).

In the following, by semisimple block in the union of Lusztig series E`(GF , s) we mean
the block containing the semisimple character of E(GF , s). Note that Lusztig induction
of a semisimple character contains a semisimple character. This follows from the fact that
Jordan decomposition preserves uniform functions and the fact that the trivial character
is a constituent of any Lusztig induction of the trivial character (see e.g. [10, proof of
Cor. 10.1.7]).

Proposition 4.3. Let t ∈ CG∗(s)
F be an `-element and b the principal `-block of CG∗(st)

F .
Then J̄G

t (b) is the semisimple block in E`(GF , s).

Proof. The principal block of CG∗(st)
F is labelled by the e-Harish-Chandra series of (L∗t , 1)

for L∗t the centraliser of a Sylow e-torus of CG∗(st). Thus we are not in one of the
exceptional cases of Proposition 3.6 whence the corresponding unipotent e-cuspidal pair
of CG∗(s) is of the form (L∗s, 1). Let (L, λ) be associated to (L∗s, 1) as in Proposition 2.2,
so λ is the semisimple character in E(LF , s). Hence the semisimple block in E`(GF , s) lies
above (L, λ), so equals J̄G

t (b). �

By Theorem 3.2, for any e-split Levi M of G there is a map RG
M from the set of `-

blocks in E`(MF , s) to the set of `-blocks in E`(GF , s) such that if c is an `-block of MF

in series s, then every constituent of RG
M(µ) for any µ ∈ Irr(c) ∩ E(MF , s), lies in RG

M(c).
The next statement mirrors [11, Prop. 16]:

Proposition 4.4. Let M ≤ G be e-split with s ∈ M∗. Let (Li, λi), i = 1, 2, be two
e-Jordan cuspidal pairs below (MF , s). Then these are e-Jordan cuspidal pairs below
(GF , s), and if bMF (L1, λ1) = bMF (L2, λ2) then also bGF (L1, λ1) = bGF (L2, λ2).

Further, if (L, λ) is an e-Jordan quasi-central cuspidal pair below a block b in E`(MF , s)
then it is so below RG

M(b).
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Proof. The first statement is clear from the definition of e-Jordan cuspidal pairs and the
fact that if L is e-split in M and M is e-split in G, then L is e-split in G. Suppose that
bMF (L1, λ1) = bMF (L2, λ2) =: c. Then every irreducible constituent of RM

Li
(λi), i = 1, 2,

lies in c. On the other hand, if χ is an irreducible constituent of RG
Li

(λi) for any i = 1, 2,

then χ is a constituent of RG
M(µi) for some irreducible constituent µi of RM

Li
(λi) and as

observed before µi belongs to Irr(c). This proves the result. �

The next statement extends [11, Cor. 19].

Corollary 4.5. Let t ∈ C∗F be an `-element. If M∗ ≤ G∗ is an e-split Levi subgroup
such that CG∗(st) ≤M∗, with dual M ≤ G, then RG

M ◦ J̄M
t = J̄G

t on the set of unipotent
`-blocks of CM∗(st)

F .

Proof. Let c be a unipotent `-block of CG∗(st) and (Lt, λt) be a unipotent e-cuspidal
pair of quasi-central `-defect defining c. Let (L′, λ′) be a unipotent e-cuspidal pair (also
of quasi-central `-defect) of CM∗(s) such that (Lt, λt) →t (L′, λ′) in M∗. Then, CM∗(s)
is e-split in C∗, hence (L′, λ′) is an e-cuspidal pair of C∗ and (Lt, λt) →t (L′, λ′) in
G∗ by Proposition 3.6. Further, since Z◦(M∗)e ≤ Z◦(CM∗(s))e ≤ Z◦(L′)e and M∗ =
C∗G(Z◦(M∗)e), it follows that CG∗(Z

◦(L′)e) = CM∗(Z
◦(L′)e). So (L, λ) := JG

t (Lt, λt) =
JM
t (Lt, λt). Now it follows from Proposition 4.4 that

�(1) J̄G
t (c) = bGF (L, λ) = RG

M(bMF (L′, λ′)) = RG
M(J̄M

t (c)).

4.2. t-Twin blocks. Our main theorem relies on the compatibility between Lusztig in-
duction and Jordan decomposition. In order to deal with certain ambiguities in groups of
type E8, we group together certain unipotent 2-cuspidal pairs of exceptional groups into
twins as follows:

• (E6, E6[θ]) and (E6, E6[θ2]),
• (2E6,

2E6[θ]) and (2E6,
2E6[θ2]),

• (E7, φ512,11) and (E7, φ512,12).

Now for any Levi subgroup of G having one of the above as a component (note that
there can be at most one such component), we call twin 2-Harish-Chandra series the
corresponding unions of 2-Harish-Chandra series of G lying above these (see also [17,
p. 350]). Note that the two members in each of the first two pairs are Galois conjugate
over Q(θ), for θ a primitive third root of unity, while those in the last one are Galois
conjugate over Q(

√
q) when q is not a square, and rational otherwise.

For s ∈ G∗F a semisimple `′-element, we define t-twin blocks, for t ∈ CG∗(s) an `-
element, as follows: If G is not of type E8, or if e`(q) 6= 2, then t-twin blocks are blocks.
Suppose that G = E8 and e`(q) = 2. Let (L∗t , λt) be a unipotent e-cuspidal pair of
CG∗(st) = CC∗(t) of quasi-central `-defect and let b = J̄G

t (bCG∗ (st)F (L∗t , λt)). Then the
t-twin block containing b is the pair consisting of b and its “twin” corresponding to the
twin (L∗t , λ

′
t) of (L∗t , λt) if (L∗t , λt) is as above; see the list shown in Table 1. Otherwise,

the t-twin block of b contains only b. With this, the map J̄G
t from Proposition 4.1 can

and will be considered as a map from the set of unipotent blocks of CG∗(st)
F to the set

of t-twin blocks of GF .
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Table 1. t-Twin blocks, `|(q + 1)

G CG∗(s)
F ` L∗Ft λt, λ

′
t

E8 G∗F 6= 5 Φ2
2.

2E6(q) 2E6[θ], 2E6[θ2]
E8

2E6(q).2A2(q) 6= 3 Φ2
2.

2E6(q) 2E6[θ], 2E6[θ2]
E8 E7(q).A1(q) 6= 2 Φ2

2.
2E6(q) 2E6[θ], 2E6[θ2]

E8 G∗F 6= 2, 3 Φ2.E7(q) φ512,11, φ512,12

E8 E7(q).A1(q) 6= 2 Φ2.E7(q) φ512,11, φ512,12

4.3. Inductive arguments. The following statement will allow us to inductively deal
with many cases of Theorem 1.

Proposition 4.6. Let t ∈ C∗F be an `-element and χ ∈ E(GF , st). Assume that CG∗(st)
is contained in an e-split proper Levi subgroup M∗ of G∗ and that Theorem 1 holds for
its dual M. Let bt be the unipotent `-block of CG∗(st)

F containing πG
st (χ). Then bGF (χ)

is contained in J̄G
t (bt).

Proof. By Lemma 2.7, there is γ ∈ E(GF , s) with 〈d1,G(χ), γ〉 6= 0, so in particular lying
in the `-block bGF (χ) = bGF (γ). Let M ≤ G be dual to M∗ and let χ′ ∈ E(MF , st) with
χ = ±RG

M(χ′) and πG
st (χ) = πM

st (χ′) (see [9, Thm 7.1]). Then〈
d1,M(χ′), ∗RG

M(γ)
〉

=
〈
d1,G(RG

M(χ′)), γ
〉

= ±〈d1,G(χ), γ〉 6= 0,

whence there is a constituent γ′ ∈ E(MF , s) of ∗RG
M(γ) with〈

d1,M(χ′), γ′
〉〈∗RG

M(γ), γ′
〉
6= 0.

By assumption and since
〈
d1,M(χ′), γ′

〉
6= 0 we know that bMF (γ′) = bMF (χ′) is contained

in J̄M
t (bt). Application of Proposition 4.4 and Corollary 4.5 then yields

bGF (χ) = bGF (γ) = RG
M(bMF (γ′)) lies in RG

M(J̄M
t (bt)) = J̄G

t (bt),

as claimed. �

Another useful reduction is the following:

Proposition 4.7. Let M be a proper F -stable Levi subgroup of G whose dual in G∗

contains CG∗(s) and let t ∈ CG∗(s)
F be an `-element. If Theorem 1 holds for M and t,

then it holds for G and t.

Proof. Recall that by the results of Bonnafé–Rouquier, ±RG
M induces a bijection (referred

to as Jordan correspondence in [22]), which we will abbreviate BR-correspondence here,
between the `-blocks in E`(MF , s) and the `-blocks in E`(GF , s). By [22, Prop. 2.4, 2.6
and Thm A], there exists a bijection ΨG

M between the set of e-Jordan cuspidal pairs
below (MF , s) and the set of e-Jordan cuspidal pairs below (GF , s) such that for any
e-Jordan cuspidal pair (L′, λ′) below (MF , s), bGF (ΨG

M(L′, λ′)) is the BR-correspondent
of bMF (L′, λ′). The bijection ΨG

M is described as follows: If (L′, λ′) is an e-Jordan cuspidal
pair below (MF , s), then ΨG

M(L′, λ′) = (L, λ), where L = CG(Z◦(L′)e) and λ = ±RL
L′(λ

′).
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Passing to duals we have that L∗ = CG∗(Z
◦(L′∗)e). Since L′∗ is e-split in M∗, L′∗ =

CM∗(Z
◦(L′∗)e) and hence L′∗ = L∗ ∩M∗. Consequently, CL∗(s) = CL′∗(s) and by prop-

erties of Digne–Michel’s Jordan decomposition, πL
s (λ) = πL′

s (λ′). Thus, if (L′, λ′) corre-
sponds to the unipotent e-cuspidal pair (L∗s, λs) of CM∗(s) via Proposition 2.2 (for the
group M), then (L, λ) also corresponds to (L∗s, λs) via Proposition 2.2.

Let t ∈ CG∗(s)
F be an `-element. It follows from the above that for any unipotent e-

cuspidal pair (L∗t , λt) of CG∗(st), if (L′, λ′) is in the MF -class of JM
t ((L∗t , λt)), then (L, λ)

is in the GF -class of JG
t ((Lt, λt)). Consequently, for any unipotent block b of CG∗(st),

J̄G
t (b) is the BR-correspondent block of J̄M

t (b).
Now let χ ∈ E(GF , st). Since CG∗(st) ≤ M∗, there exists χ′ ∈ E(MF , st) with

χ = ±RG
M(χ′) and γ := πG

st (χ) = πM
st (χ′) (see [9, Thm 7.1]). Denoting by b the block

containing γ, by hypothesis we have χ′ ∈ Irr(J̄M
t (b)) (here we note that as M is proper in

G, t-twin blocks of M are the same as blocks). Thus, χ belongs to the BR-correspondent
of J̄M

t (b), that is to J̄G
t (b). �

Proposition 4.8. The conclusion of Theorem 1 holds whenever s ∈ Z(G∗F ).

Proof. Let s ∈ Z(G∗F ), so E(CG∗(t)
F , 1) = E(CG∗(st)

F , 1). Let ŝ ∈ Irr(GF ) be the linear
character of `′-order determined by s. Then ⊗ ŝ : E(GF , t) → E(GF , st) preserves
the partition into `-blocks. Now by Enguehard [11, Cor. 19, Thm B], the conclusion of
Theorem 1 holds whenever s = 1. The claim follows since tensoring with ŝ commutes
with Lusztig induction (see [7, Prop. 9.6] and note that all unipotent elements of GF are
contained in the kernel of any linear character of GF ). �

4.4. Theorem 1 when t is central.

Proposition 4.9. Suppose that s ∈ G∗F is isolated and non-central. Let (L∗s, λs) be a
unipotent e-cuspidal pair of C∗ and let (L, λ) be an associated e-Jordan cuspidal pair below
(GF , s) via Proposition 2.2. Then bGF (L, λ) is in J̄G

1 (bC∗F (L∗s, λs)).

Proof. If (L∗s, λs) is of quasi-central `-defect then the result follows from the definition of
JG

1 and the fact that by Proposition 3.6(a), the relation →1 is the identity. Since every
unipotent block has an associated unipotent e-cuspidal pair of quasi-central `-defect,
it remains to show that if (L∗s, λs) and (L′∗s, λ

′
s) are two unipotent e-cuspidal pairs of

C∗, corresponding via Proposition 2.2 to pairs (L, λ), (L′, λ′) respectively, of GF , and if
bC∗F (L∗s, λs) = bC∗F (L′∗s, λ

′
s), then bGF (L, λ) = bGF (L′, λ′).

Let b be a unipotent block of C∗ containing two distinct unipotent e-Harish-Chandra
series. By the main result of [5] we have that either ` = 2, or ` is bad for C∗ (since 3D4(q)
is not a component of C∗F by Lemma 2.10).

Suppose first that all components of G (and hence of C∗) are of classical type. Then
by the above ` = 2 and E2(GF , s) is a single 2-block (see for instance [7, Thm 21.14]).
Thus we may assume G has a component of exceptional type and ` is bad for G.

If [G,G] is simple, then the result follows from Theorem 3.1. Thus we may assume
that [G,G] is not simple and therefore also that the semisimple rank of G is at most 7, as
X is of exceptional type and G is proper in X. Since G has a component of exceptional
type, it follows that [G,G] is of type E6A1 and ` = 2 or 3. Since groups of type A have no
non-central isolated elements, the E6-component of s in G∗ is non-central and isolated.
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Thus, by [1, Tab. 3], one sees that all components of C∗ are of type A. Since 3 is good
for groups of type A, this forces ` = 2. Then the result follows by Proposition 3.3. �

Proposition 4.10. Suppose that s ∈ G∗F is isolated and non-central. Let (L∗s, λs) be
a unipotent e-cuspidal pair of C∗ and let (L, λ) be an associated e-Jordan cuspidal pair
below (GF , s) via Proposition 2.2. Then there exists a bijection

π̃G
s : E(GF , (L, λ))→ E(C∗F , (L∗s, λs))

such that any constituent χ of RG
L (λ) has Jordan correspondent π̃G

s (χ), unless possibly if
G = E8, and C∗ and (L∗s, λs) belong to a “twin”, in which case the Jordan correspondent
could be a constituent of RC∗

L∗s
(λ′s) for (L∗s, λ

′
s) the twin of (L∗s, λs).

In particular, π̃G
s (χ) and the Jordan correspondent of χ have the same degree, so π̃G

s

preserves `-defects.

Proof. Suppose first that [G,G]F 6= E8(2). Then the Mackey formula holds for GF and
the result follows by [17, Cor. 4.7.7]. Here, we note that in the statement of [17, Cor. 4.7.7],
the assumption on the Mackey formula is on the ambient group, and that this group is
itself simple, but it can be easily checked that the proof and result carry over with our
assumptions. Now suppose that [G,G]F = E8(2). This implies that there is an F -stable
decomposition G = E8×T with a torus T. Using the compatibility of Lusztig induction
with direct products the result then follows from [19, Prop. 3.11] when ` ≥ 7, and from
[21, Prop. 6.11] when ` ∈ {3, 5}. �

Proposition 4.11. The conclusion of Theorem 1 holds for any t ∈ Z(G∗F ).

Proof. Let t ∈ Z(G∗F ) and t̂ ∈ Irr(GF ) be the linear character of `-power order deter-
mined by t. Then ⊗ t̂ : E(GF , s)→ E(GF , st) is a bijection preserving the partition into
`-blocks, and E`(CG∗(s)

F , 1) = E`(CG∗(st)
F , 1) so it suffices to prove the result for t = 1.

Suppose that t = 1. By Proposition 4.7 we may assume s is isolated in G∗ and by
Proposition 4.8 we may assume that s is not central. Let η ∈ E(C∗F , 1) and χ ∈ E(GF , s)
with η = πG

s (χ). We are required to show that bGF (χ) belongs to J̄G
1 (bC∗F (η)). Let

(L∗s, λs) be a unipotent e-cuspidal pair of C∗F with η ∈ E(C∗F , (L∗s, λs)) and let (L, λ) be
an e-Jordan cuspidal pair below (GF , s) associated to (L∗s, λs) via Proposition 2.2 (note
that the existence of (L∗s, λs) is guaranteed by generalised e-Harish-Chandra theory). By
Proposition 4.10, χ ∈ E(GF , (L, λ))∪E(GF , (L′, λ′)), where (L′, λ′) is an e-Jordan cuspidal
pair below (GF , s) associated to the twin of (L∗s, λs) via Proposition 2.2. Consequently,
bGF (χ) is either bGF (L, λ) or bGF (L′, λ′). Since also bC∗F (η) = bC∗F (L∗s, λs), the claim
follows from Proposition 4.9. �

Corollary 4.12. Suppose [X,X] is of exceptional type. Assume ` > 2 is good for C∗ and
` 6= 3 if C∗F has a component of type 3D4. Suppose C∗ = C∗b and that Theorem 1 holds
for all proper F -stable Levi subgroups of G. Then the conclusion of Theorem 1 holds for
every `-element t ∈ C∗F .

Proof. Let t ∈ C∗F be an `-element. The assumptions imply that ` ∈ Γ(C, F ) in the
notation of [5]. If t /∈ Z(C∗), then (the proof of) [5, Prop. 2.5] shows that CG∗(st) = CC∗(t)
is contained in a proper e-split Levi subgroup M∗ of C∗ and thus also in the proper e-
split Levi subgroup CG∗(Z

◦(M∗)e) of G∗, and hence the conclusion follows inductively
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by Proposition 4.6. Thus t ∈ Z(C∗), so CG∗(st) = CG∗(s). By Proposition 4.7, we
may assume s is isolated in G∗. By inspection of the lists of isolated elements in [1,
Prop. 4.9, Tab. 3], if t ∈ Z(C∗) is an `-element then even t ∈ Z(G∗), and we conclude by
Proposition 4.11. �

4.5. Theorem 1 for good primes. Suppose that ` is a good prime for G. Let t ∈
C∗F = CG∗(s)

F be an `-element and let G(t) ≤ G be a Levi subgroup of G in duality
with the Levi subgroup CG∗(t) of G∗.

Let χ ∈ E(GF , st). By properties of Digne–Michel’s Jordan decomposition, χ =

RG
G(t)(t̂χt) where χt ∈ E(G(t)F , s) satisfies πG

st (χ) = π
G(t)
s (χt). By the usual commu-

tation property of the decomposition map with Lusztig induction (apply [7, Prop. 9.6]
with f = d1,G(1)), χ lies in the same `-block of GF as some constituent of RG

G(t)(χt). By
results of Cabanes–Enguehard, we have the following.

Proposition 4.13. With the notation above, every irreducible constituent of RG
G(t)(χt)

lies in bGF (χ). Moreover, for every block c of G(t)F in E`(G(t)F , s), there exists a unique
block RG

G(t)(c) of GF in E`(GF , s) such that every irreducible constituent of RG
G(t)(µ), for

µ ∈ E(G(t)F , s) ∩ Irr(c), lies in RG
G(t)(c).

Proof. By [6, Prop. 2.4], CG∗(t) is Eq,`-split in G∗ and therefore G(t) is Eq,`-split in G.
The assertion follows from [6, Thms 2.5 and 2.8]. �

Proposition 4.14. Assume ` is odd and good for G and ` > 3 if GF has a component of
type 3D4. Let (L∗t , λt) be a unipotent e-cuspidal pair of CG∗(st) of (quasi-)central `-defect

and (L, λ) ∈ JG
t ((L∗t , λt)), (L(t), λ(t)) ∈ JG(t)

t ((L∗t , λt)). Suppose that Gb ≤ G(t). Then

RG
G(t)(bG(t)F (L(t), λ(t))) = bGF (L, λ).

Proof. Set b := bGF (L, λ), H := G(t), LH := L(t), and λH := λ(t). Set G1 := Ga

and G2 := Z◦(G)Gb. Then G = G1G2, the kernel of the multiplication map from

G̃ := G1 ×G2 to G is a central torus, isomorphic to Z(G) = Z◦(G), and we may put

ourselves in the setting (and use the notation) of Proposition 2.4. So, letting H̃ be the

inverse image of H in G̃, we have H̃ = H1 ×H2 with Hi an F -stable Levi subgroup of
Gi. Note that by hypothesis H2 = G2.

Let (L∗s, α) be a unipotent e-cuspidal pair of CG∗(s)
F such that L∗ = CG∗(Z

◦(L∗s)e)
is dual to L in G, πL

s (λ) = α and (L∗s, α) →t (L∗t , λt). Similarly, let (L∗s,H, αH) be a

unipotent e-cuspidal pair of CH∗(s)
F such that L∗H = CH∗(Z

◦(L∗s,H)e) is dual to LH in

H, πLH
s (λH) = αH and (L∗s,H, αH) →t (L∗t , λt) in CH∗(s). Note that by Proposition 2.10,

applied with st in place of s, L∗Ft does not have a component of type 3D4 and hence
→t equals ∼ in CG∗(s) as well as in CH∗(s). Here, we set H∗ = G(t)∗ = CG∗(t).
Further, since CCH∗ (s)(t) = CH∗(s), we may in fact assume that (L∗s,H, αH) = (L∗t , λt).

So, in particular, (L∗s
′, α|L∗s ′F ) and (L∗s,H

′, αH|L∗s,H′F ) are CG∗(s)
F -conjugate, where again

we denote by X ′ the derived subgroup of X. By Proposition 2.4(d), it follows that
((L∗s)

′
2, α2|(L∗s)′F2

) and ((L∗s,H)′2, (αH)2|(L∗s,H)′F2
) are CG∗2

(s2)F -conjugate. Further, by Propo-

sition 2.4(a), ((L∗s)2, α2) and ((L∗s,H)2, (αH)2) are unipotent e-cuspidal pairs of CG∗2
(s2) =



JORDAN CORRESPONDENCE AND BLOCK DISTRIBUTION 21

CH∗2
(s2). Therefore, by the argument at the beginning of the proof of Proposition 3.6 and

up to conjugation in CG∗2
(s2)F , we may assume that

((L∗s)2, α2) = ((L∗s,H)2, (αH)2),

and hence by Proposition 2.4(b) that

(L2, λ2) = ((LH)2, (λH)2).

Now let χH ∈ E(HF , (LH, λH)) and let χ be a constituent of RG
H(χH). By Proposi-

tion 2.4(c), χ̃H = (χH)1 ⊗ (χH)2 for some (χH)i ∈ E(HF
i , ((LH)i, (λH)i)), i = 1, 2, and

similarly χ̃ = χ1 ⊗ χ2 with χi ∈ E(GF , (Hi, (χH)i)). Since H2 = G2, we have χ2 = (χH)2

and as observed above, (L2, λ2) = ((LH)2, (λH)2). Hence, χ2 ∈ E(GF
2 , (L2, λ2)) ⊆

E(GF
2 , s2) ∩ Irr(b2). On the other hand, χ1 ∈ E(GF

1 , s1) and by Lemma 2.9, E(GF
1 , s1) =

E(GF
1 , (L1, λ1)). It follows by Proposition 2.4(c) that χ ∈ E(GF , (L, λ)) ⊆ Irr(b). Since

χH ∈ Irr(bHF (H, λH), the result follows by Proposition 4.13. �

Proposition 4.15. Suppose that ` is odd and good for G, and ` > 3 if GF has a compo-
nent of type 3D4. Suppose also that Theorem 1 holds for all proper F -stable Levi subgroups
of G. Then Theorem 1 holds for G and `.

Proof. By hypothesis and Proposition 4.6, we may assume G(t) is not contained in any
proper e-split Levi subgroup of G. Thus by [5, Prop. 2.5] we may assume that Gb ≤
G(t). By Propositions 4.13 and 4.14 and the paragraph preceding Proposition 4.13 it
suffices to prove the result for the case G = G(t) and t = 1. This case was settled in
Proposition 4.11. �

4.6. Proof of Theorem 1. We are now ready to complete the proof of our main theorem
by checking individually the various isolated blocks at bad primes in simple groups of
exceptional type.

Proof of Theorem 1. Let G be as in the statement and assume that Theorem 1 holds
for every proper F -stable Levi subgroup of G. If ` is odd and good for G and ` > 3
if GF has a component of type 3D4, the result follows by Proposition 4.15. If G does
not have any factors of exceptional type and ` = 2, then E`(GF , s) is a single `-block
(see [7, Thm 21.14]) and the claim holds trivially. So we are reduced to the case that
GF has a factor of exceptional type and that ` is bad for G, or ` = 3 and GF has a
component of type 3D4. By Proposition 4.7 we may assume that s is isolated in G∗ and
by Proposition 4.8 that s is not central in G∗.

Suppose that ` = 3 and GF has a component of type 3D4. By Proposition 2.10 this
implies [X,X] is of exceptional type. Then, G is of type D4, D4A1 or D4A2. Since
groups of type A have no non-central isolated elements, the D4-component of s in G∗

is non-central and isolated. Thus, by [21, Tab. 9], all components of CG∗(s) are of type
A and unless G has type D4A2 they are all of type A1. By Corollary 4.12, we may
inductively assume that G is of type D4A2 and hence again by [21, Tab. 9] the rational
type of CG∗(s) is A1(q3)A1(q).A2(εq) for some ε ∈ {±1}. If 3 6 |(q− ε) then we conclude by
Corollary 4.12, while in the opposite case, by [7, Prop. 3.3], CG∗(s) has only one conjugacy
class of unipotent e-cuspidal pairs. It follows that E3(G∗, s) is a single 3-block and the
claim holds trivially.
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Thus, we may assume that ` is bad for G, s is isolated and non-central, and either
[G,G] is simple of exceptional type or of type E6A1.

We now discuss these remaining possibilities according to the structure of [G,G]F .

Groups G2(q)
Here the centralisers of isolated elements s 6= 1 are of rational types A1(q)2, A2(q) and

2A2(q), and in each case, E`(GF , s) is a single `-block for the appropriate primes `, see
[21, Tab. 9]. Thus Theorem 1 is trivially satisfied.

Groups F4(q)
For ` = 3 let 1 6= s ∈ G∗F be an isolated 2-element. Then C∗ = CG∗(s) has only

factors of classical type, so 3 is a good prime for C∗, and moreover the assumptions of
Corollary 4.12 are satisfied, whence we are done. For ` = 2 there is nothing to prove as
by [21, Tab. 2] for all isolated 3-elements s 6= 1, E2(G, s) is a single 2-block.

Groups E6(q) and 2E6(q)
We give the arguments for E6(q), the case of 2E6(q) being entirely similar. For ` = 3

the centralisers of isolated 2-elements 1 6= s ∈ G∗ are of rational type A5(q)A1(q). We
discuss the various possibilities for 3-elements t ∈ C∗F . If t is central, so ` = 3 divides
|Z(G∗)F | and hence e = 1, we conclude by Proposition 4.11. Otherwise, by inspection
CG∗(st) lies in a proper e-split Levi subgroup of G∗ and we can apply Proposition 4.6.
For ` = 2 again by Table 3 for all isolated 3-elements s 6= 1, E2(G, s) is a single 2-block.

Groups E6(q)A1(q) and 2E6(q)A1(q)
Here we can argue in a completely similar fashion as in the previous case since the

A1-factor has no non-central isolated elements.

Groups E7(q)
For ` = 3 by [21, Tab. 4] we only need to consider the blocks in Table 4 below. Here

all centralisers of isolated 2-elements satisfy the assumptions of Corollary 4.12 and we are
done. Note that E7(2) does not need to be considered as it has no (isolated) semisimple
2-elements. For ` = 2 again E2(G, s) is a single 2-block for all isolated 3-elements s 6= 1
by [21, Tab. 4].

Groups E8(q)
First assume that ` = 5. Let 1 6= s ∈ G∗F be an isolated 5′-element and C∗ = CG∗(s).

Then 5 is good for C∗ and the assumptions of Corollary 4.12 are satisfied for C∗ (see [21,
Tab. 7 and 8] and Tables 5 and 6 below). This completes the argument when ` = 5.

Now assume that ` = 3 and let e = e3(q). Let 1 6= s ∈ G∗F be an isolated 3′-element
and C∗ = CG∗(s). If C∗ has only classical factors not of rational type 3D4, then 3 is a
good prime for C∗ and we can apply exactly the same argument as in the case ` = 5 to
conclude. The only centraliser for which this approach fails is when s is an involution
with C∗ of rational type E7(q)A1(q).

The Harish-Chandra series in this case are listed in Table 8 below (copied from [21,
Tab. 6]) for e = 1; for e = 2 we have the Ennola dual situation which can be treated
in exactly the same manner. We discuss the various 3-elements t ∈ C∗F . Assume that
t has a non-central component in the A1-factor. Then CG∗(st) is contained in a 1-split
Levi subgroup of G∗ of rational type E7(q).Φ1, and we may conclude by Proposition 4.6.
Thus, the centraliser of t does not contain the whole E7-factor. But now by inspection
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the centraliser of any element of order 3 in E7(q) is either of type A5A2, or it is contained
in a proper 1-split Levi subgroup of E7(q). Thus, any non-trivial 3-element of E7(q) none
of whose powers has centraliser A5A2 has its centraliser in a proper 1-split Levi subgroup
and Proposition 4.6 applies.

So finally assume t is such that CG∗(st
k)F = A5(q)A2(q)A1(q) for some k ≥ 1. It can be

checked using Chevie and the known block distribution for E(GF , s) from [21, Prop. 6.7]
that all but four classes of maximal tori T∗ of A5(q)A2(q)A1(q) have the property that
all constituents of RG

T (ŝ) lie in the same 3-block of GF , namely the semisimple block in
E3(GF , s). Now let T∗ be the maximally split torus of CG∗(st); note that all factors of

this centraliser have untwisted type A. So R
CG∗ (st)
T∗ (1) contains all unipotent characters

of CG∗(st). Note that the maximally split torus is uniquely determined up to conjugacy
inside CG∗(st) by its order. Thus, if T∗ is not one of the four exceptions mentioned before,
then by Lemma 2.8 all χ ∈ E(GF , st) lie in the semisimple block in E3(GF , s), and we may
conclude with Proposition 4.3 that Theorem 1 holds in this case. The excluded maximal
tori T∗, intersected with the A5(q)A2(q)-factor of CG∗(st

k)F , have orders Φ3
3Φ1 or Φ2Φ2

3Φ6,
and they are maximally split in a centraliser in A5(q)A2(q) only when this centraliser is
contained in a subgroup Φ3

3A1(q), respectively in T∗. But the second does not occur as
the centraliser of a 3-element in A5(q)A2(q), while for elements with centraliser the first
type, no power has centraliser A5(q)A2(q)A1(q).

For ` = 2, by [21, Tab. 5] there are only two types of non-central isolated elements
s ∈ G∗F of order 3 to consider with centralisers as listed in Table 2, which is taken from
loc. cit., for q ≡ 1 (mod 4). The case q ≡ 3 (mod 4) is Ennola dual to this one and
analogous arguments apply to it.

Table 2. Harish-Chandra series in some isolated 2-blocks of E8(q), q ≡ 1 (mod 4)

No. CG∗(s)
F LF CL∗(s)

F λ WGF (L, λ)
3 E6(q).A2(q) ∅ L∗F 1 E6 × A2

D4 L∗F D4[1] G2 × A2

4 E6 L∗F E6[θ±1] A2

5 2E6(q).2A2(q) A3
1 Φ5

1Φ3
2 1 F4 × A1

D4 Φ4
1Φ2

2.
2A2(q) φ21 F4

D6 Φ2
1Φ2.

2A5(q) φ321 A1 × A1

E7 Φ1.
2A5(q)2A2(q) φ321 ⊗ φ21 A1

E7 Φ1Φ2.
2E6(q) 2E6[1] A1

E8 CG∗(s)
F 2E6[1]⊗ φ21 1

6 E7 Φ1Φ2.
2E6(q) 2E6[θ±1] A1

E8 CG∗(s)
F 2E6[θ±1]⊗ φ21 1

The involution centralisers in CG∗(s)
F = E6(q).A2(q) either lie in a proper 1-split Levi

subgroup, or equal A5(q)A2(q)A1(q). Thus, again, we only need to worry about 2-elements
t 6= 1 such that CG∗(st

k) = A5(q)A2(q)A1(q) for some k ≥ 1. In this case all constituents
of the Deligne–Lusztig characters for maximal tori of CG∗(st

k) lie in the semisimple 2-
block in E2(GF , s) as described in [21, Prop. 6.4] and we conclude with Lemma 2.8.
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Finally assume CG∗(s)
F = 2E6(q).2A2(q). Here, centralisers of involutions are either

contained in a proper 1-split Levi subgroup and we are done by induction, or are of rational
type 2A5(q)A1(q).2A2(q) or 2D5(q)Φ2.

2A2(q). By a Chevie-computation, all maximal tori
T∗ of either of the latter two subgroups have the property that all constituents of RG

T (ŝ)
lie in the semisimple block of E2(GF , s) as described in [21, Prop. 6.4], and so we may
conclude as before. �

Proof of Corollary 2. By [11, Thm A, Thm A.bis], the Jordan correspondents of χ and
χ′ lie in the same unipotent `-block of CG∗(r)

F . Now the result is immediate from
Theorem 1. �

5. Descent to quasi-simple groups of types E6 and E7

Let X be as in Theorem 1 such that G := [X,X] is simple of simply connected type E6

or E7; so G ↪→ X is a regular embedding. Now Gad := X/Z(X) is simple of adjoint type,
and GF

ad = (X/Z(X))F ∼= XF/Z(XF ) since Z(X) is connected, so Theorem 1 immediately
gives a description of the `-blocks of GF

ad, by only considering those characters that are
trivial on Z(XF ).

We also obtain strong information on the `-blocks of groups of simply connected type.
Namely, with m := |Z(GF )| we have: if m = 1 then GF = (G/Z(G))F = GF

ad which
was discussed above, while if m 6= 1 then GF is quasi-simple with m = 3 for type E6 and
m = 2 for type E7. For general facts on covering blocks see [24, Sec. 6.8].

Proposition 5.1. In the setting introduced above, let ` be a non-defining prime for G,
let b = bGF (L, λ) be an `-block of GF in E`(GF , s) for s ∈ G∗F a semisimple `′-element,
and let B be an `-block of XF covering b.

(a) If b is XF -invariant, the members of Irr(b) are the constituents of the restriction to
GF of the members of Irr(B). If moreover CG∗(s)

F = C◦G∗(s)
F and ` 6= m, restriction

defines a height preserving bijection from Irr(B) to Irr(b).
(b) If b is not XF -invariant, then C◦G∗(s)

F < CG∗(s)
F , in particular CG∗(s) is discon-

nected, ` 6= m, the block b is XF -conjugate to m distinct blocks of GF , all χ̃ ∈ Irr(B)
have reducible restriction to GF and the restriction of every member of Irr(B) to
GF contains one constituent in each of these blocks. This defines a height preserving
bijection from Irr(B) to Irr(b).

In particular, the `-block distribution of GF is determined, up to the labelling of characters
in XF -orbits in case (b), by Theorem 1.

Proof. The first claim in (a) is a standard fact about covering blocks. Assume CG∗(s)
F =

C◦G∗(s)
F and m 6= `. We claim that CG∗(st)

F = C◦G∗(st)
F for all `-elements t ∈ CG∗(s)

F .
If not, then |CG∗(st)

F : C◦G∗(st)
F | = m > 1. But CG∗(st) = CCG∗ (s)(t), and m is prime

to `, hence to the order of t, contradicting [26, Prop. 14.20]. Thus all characters in Irr(B)
restrict irreducibly to GF . This gives the last claim in (a).

So now assume that b is not XF -invariant. Then no χ ∈ Irr(b) is XF -invariant, so
necessarily CG∗(s)

F > C◦G∗(s)
F (and hence CG∗(s) is disconnected), which again by [26,

Prop. 14.20] implies that o(s) is divisible by m and so ` 6= m. Further, B covers the m =
|XF : GFZ(XF )| distinct XF -conjugates of b and the restriction to GF of every character
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χ̃ ∈ Irr(B) has constituents in each of them. Since XF/GF is cyclic, all restrictions are
multiplicity-free and thus have m constituents. The last claim of (b) then follows. �

Remark 5.2. (1) If GF is of adjoint type then m = 1 and we are in the situation of
case (a).

(2) If ` 6= 2 then case (a) occurs precisely when the GF -class of (L, λ) is XF -invariant,
by [22, Thm A] (but see the counter-example in [22, Exmp. 3.16] when ` = 2.)

(3) In (a), if either C◦G∗(s)
F < CG∗(s)

F or ` = m, there will in general not exist a height
preserving bijection.

(4) The proof shows that in case (b) the centralisers CG∗(st) are disconnected for all
`-elements t ∈ CG∗(s).

Example 5.3. In case (a) of Proposition 5.1, CG∗(s) could be connected or disconnected:
an example for the first case is the block 13 in Table 3 below, an example for the second is
the block 1 in Table 3. Even if CG∗(s) is connected but ` = m there may exist `-elements
t ∈ CG∗(s)

F with CG∗(st) disconnected (e.g., taking s = 1).

6. On e-Harish-Chandra series in exceptional groups

In this section we complement our results from [21] in several ways. First we parametrise
the isolated blocks for bad primes in exceptional groups of type E6 and E7 with connected
centre and verify the validity of an e-Harish-Chandra theory in this situation. Second, we
give the block distribution for some isolated 5-blocks in groups of type E8 inadvertently
omitted in [21]. Finally, we give the proofs of the extensions of results from [21] and [22]
to the situation considered in the present paper. The e-cuspidal pairs in the subsequent
tables can be determined, for example, as explained in [33].

6.1. Isolated blocks in exceptional groups of adjoint type. In this section G is a
group with connected centre such that [G,G] is simple of simply connected type E6 or
E7 and F : G→ G is a Frobenius endomorphism with respect to an Fq-structure.

It follows by looking at the root datum that G is isomorphic to its dual G∗. Since G
has connected centre, all centralisers of semisimple elements in G∗ are connected and thus
the notions of isolated and quasi-isolated elements do coincide. If s ∈ G∗ is isolated, then
so is sz for any z ∈ Z(G∗), with the same centraliser, and this defines an equivalence
relation on the set of conjugacy classes of isolated semisimple elements. We describe
the `-block subdivision of E(G, s) for s ∈ G∗F an isolated `′-element and ` ∈ {2, 3} not
divding q. Note that the blocks corresponding to two isolated elements s and sz, for
z ∈ Z(G∗F ), are obtained from one another by tensoring with a linear character ẑ of GF

(see [17, Prop. 2.5.21]). Also note that the case of s = 1, that is, of unipotent blocks has
been dealt with by Enguehard [11], so we may assume s is non-central. As before, let
e = e`(q) be the order of q modulo ` when ` is odd, respectively the order of q modulo 4
when ` = 2.

We first determine the decomposition of Lusztig induction for e-Harish-Chandra series
of G in E(GF , s).

Proposition 6.1. Let G be as above, ` ∈ {2, 3} not dividing q, s ∈ G∗F a non-central
isolated `′-element, and set e = e`(q). Then we have:
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(a) If [G,G]F = E6(q)sc then E(GF , s) is the disjoint union of the e-Harish-Chandra
series listed in Table 3.

(b) If [G,G]F = 2E6(q)sc then the e-Harish-Chandra series in E(GF , s) are the Ennola
duals of those in Table 3.

(c) If [G,G]F = E7(q)sc then E(GF , s) is the disjoint union of the e-Harish-Chandra
series listed in Table 4 when e = 1, respectively their Ennola duals when e = 2.

(d) The assertion of [21, Thm 1.4] continues to hold for G.

In Tables 3 and 4, we give the data relative to G := G/Z(G), a simple group of adjoint
type. The numbering of blocks follows [21, Tab. 3 and 4].

Table 3. e-Harish-Chandra series in G
F

= E6(q)ad

No. CG
∗(s)F (`, e) L

F
CL
∗(s)F λ W

G
F (L, λ)

1 A2(q)3 (2, 1) Φ6
1 L

∗F
1 A3

2

2 A2(q3) (2, 1) Φ2
1.A2(q)2 Φ2

1Φ2
3 1 A2

6 A2(q2).2A2(q) (2, 1) Φ3
1.A1(q)3 Φ3

1Φ3
2 1 A2 × A1

Φ2
1.D4(q) Φ2

1Φ2
2.

2A2(q) φ21 A2

7 A2(q)3 (2, 2) Φ2
1Φ3

2.A1(q) Φ3
1Φ3

2 1 A3
1

Φ1Φ2
2.A3(q) Φ2

1Φ2
2.A2(q) φ21 (3×) A1 × A1

Φ2.A5(q) Φ1Φ2.A2(q)2 φ⊗2
21 (3×) A1

G
F

CG
∗(s)F φ⊗3

21 1
8 A2(q3) (2, 2) Φ2.A2(q2)A1(q) Φ1Φ2Φ3Φ6 1 A1

G
F

CG
∗(s)F φ21 1

12 A2(q2).2A2(q) (2, 2) Φ2
1Φ4

2 L
∗F

1 A2 × A2

13 A5(q)A1(q) (3, 1) Φ6
1 L

∗F
1 A5 × A1

14 A5(q)A1(q) (3, 2) Φ2
1Φ4

2 L
∗F

1 C3 × A1

15 Φ2.A5(q) L
∗F

φ321 A1

Proof. Let G0 := [G,G], a simple group of simply connected type, and consider the
regular embedding G0 ↪→ G. Then for any F -stable Levi subgroup L0 ≤ G0 we have

IndGF

GF
0
◦RG0

L0
= RG

L ◦ IndLF

LF
0

(see [17, Prop. 3.2.9]), where L = Z(G)L0 is the corresponding Levi subgroup of G.
Now above every character in E(GF

0 , s) there are |CG∗(s)
F : CG∗0

(s)F | characters of GF ,

lying in distinct Lusztig series, and similarly, above every character in E(LF
0 , s) there are

|CL∗(s)
F : CL∗0

(s)F | characters of LF , lying in distinct Lusztig series. Write IndLF

LF
0

(λ) =∑
i λi with λi ∈ Irr(LF ). Thus all constituents λi lie in distinct Lusztig series of LF , so

any summand RG
L (λi) of (RG

L ◦ IndLF

LF
0

)(λ) =
∑

iR
G
L (λi) lies inside a fixed Lusztig series
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Table 4. e-Harish-Chandra series in G
F

= E7(q)ad

No. CG
∗(s)F (`, e) L

F
CL
∗(s)F λ W

G
F (L, λ)

1 A5(q)A2(q) (2, 1) Φ7
1 L

∗F
1 A5 × A2

2 2A5(q)2A2(q) (2, 1) Φ4
1.(A1(q)3)′ Φ4

1Φ3
2 1 C3 × A1

Φ3
1.D4(q) Φ3

1Φ2
2.

2A2(q) φ21 C3

Φ1.D6(q) Φ1Φ2.
2A5(q) φ321 A1

E7(q) CG
∗(s)F φ321 ⊗ φ21 1

3 D6(q)A1(q) (3, 1) Φ7
1 L

∗F
1 D6 × A1

4 Φ3
1.D4(q) L

∗F
D4[1] B2 × A1

5 A7(q) (3, 1) Φ7
1 L

∗F
1 A7

6 2A7(q) (3, 1) Φ4
1.(A1(q)3)′ Φ4

1Φ3
2 1 C4

7 Φ1.D6(q) Φ1Φ2.
2A5(q) φ321 A1

12 A3(q)2A1(q) (3, 1) Φ7
1 L

∗F
1 A2

3 × A1

13 2A3(q)2A1(q) (3, 1) Φ5
1.A1(q)2 Φ5

1Φ2
2 1 B2

2 × A1

14 A3(q2)A1(q) (3, 1) Φ4
1.(A1(q)3)′ Φ4

1Φ3
2 1 A3 × A1

of GF and those lying inside a fixed Lusztig series are equal. In particular, knowing RG0
L0

and the decomposition of IndGF

GF
0

along Lusztig series, we can recover the RG
L (λi) uniquely.

Thus we may recover the stated decomposition of RG
L (λ) from the one for GF

0 that
was determined in [21, Prop. 4.1 and 5.1] (with the correction given in the proof of [22,
Thm 3.14], see Remark 6.8 below), from where our numbering of cases is taken. This also
shows that Harish-Chandra series for the case when GF

0 = 2E6(q)sc are Ennola dual to
those for the untwisted case, and (as in [21]) we do not print them here. The existence of
an e-Harish-Chandra theory as in [21, Thm 1.4] follows (see [21, Def. 2.9]). �

Lemma 6.2. Let G, L and ` be as in Proposition 6.1, with e = e`(q). Then:

(a) L = CG(Z(L)F` ) and L is (e, `)-adapted; and
(b) in Tables 3 and 4, λ is of quasi-central `-defect precisely in the numbered lines.

In fact, in all numbered lines except 6, 7 and 8 in Table 3, λ is even of central `-defect.
We had shown in [22, Lemma 2.7(b)] that regular embeddings do preserve the property
of having quasi-central `-defect.

By Proposition 6.1 and Lemma 6.2 the assumptions of [21, Prop. 2.17] are satisfied, so
each e-Harish-Chandra series in the two tables is contained in a unique `-block of GF .

Proposition 6.3. Let [G,G]F = E6(q)sc (resp. [G,G]F = E7(q)sc). Then for any isolated
non-central `′-element s ∈ G∗F the `-block subdivision of E(GF , s) is as indicated by the
horizontal lines in Tables 3 and 4.

For each `-block corresponding to one of the cases in the tables there is a defect group
P ≤ NGF (L, λ) with the structure described in [21, Thm 1.2].

The analogous, Ennola dual statement holds for [G,G]F = 2E6(q)sc.
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Proof. This is entirely analogous to the proofs of [21, Prop. 4.3 and 5.3]. �

Remark 6.4. The group G/Z(G) is simple of adjoint type, and as Z(G) is connected,
(G/Z(G))F = GF/Z(G)F , so the above result provides also a parametrisation of the
isolated `-blocks of the groups E6(q)ad, 2E6(q)ad and E7(q)ad for ` = 2, 3.

6.2. Some 5-blocks in E8(q). We deal with a situation missed in our paper [21]. We
thank Niamh Farrell for pointing this omission out to us. Let G be of type E8 with a
Frobenius endomorphism F : G → G such that G = GF = E8(q). If q ≡ ±1 (mod 6)
there exists an isolated element s ∈ G∗ ∼= G of order six with centraliser CG∗(s) of type
A5A2A1. It was inadvertently left out of [21, Tab. 1] (probably as its order is divisible
by two distinct bad primes; but type E8 has three bad primes). The centraliser of s in
G∗ has rational type A5(q)A2(q)A1(q) if q ≡ 1 (mod 6), and 2A5(q).2A2(q)A1(q) if q ≡ 5
(mod 6). We parametrise the `-blocks in E`(G, s) by e-cuspidal pairs for the only relevant
bad prime ` = 5.

Theorem 6.5. Theorems 1.2, 1.4 and 1.5 of [21] continue to hold for all quasi-isolated
5-blocks of E8(q) described above.

Proof. The method is completely analogous to that employed in [21]. There are three
cases to distinguish, depending on whether e := e5(q) is 1,2 or 4. First we determine the
decomposition of the Lusztig functor RG

L for the relevant e-cuspidal pairs (L, λ) below
(GF , s). Since the unipotent characters of groups of type A are uniform, and Jordan
decomposition commutes with Deligne–Lusztig induction, this decomposition follows from
the known corresponding one for unipotent characters. This also shows that GF satisfies
an e-Harish-Chandra theory above each e-cuspidal pair below (GF , s), thus showing the
assertion of [21, Thm. 1.4] in this case. The decomposition is given in Tables 5 and 6.
The notation is as in the analogous tables in [21]. Here, the case e = 2 can be obtained by
Ennola duality from the one for e = 1, and the case of centraliser 2A5(q).2A2(q)A1(q) when
q ≡ ±2 (mod 5) from the one with centraliser A5(q)A2(q)A1(q) when q ≡ ∓2 (mod 5).
(Note that the e-Harish-Chandra series in Lines 1–5 are exactly as the Lines (1) and (2)
in [21, Tab. 4].)

Table 5. Quasi-isolated 5-blocks in E8(q), q ≡ 1 (mod 5)

No. CG∗(s)
F LF CL∗(s)

F λ WGF (L, λ)

1 A5(q)A2(q)A1(q) Φ8
1 L∗F 1 A5 × A2 × A1

2 2A5(q).2A2(q)A1(q) Φ5
1.A1(q)3 Φ5

1Φ3
2 1 C3 × A1 × A1

3 Φ4
1.D4(q) Φ4

1Φ2
2.

2A2(q) φ21 C3 × A1

4 Φ2
1.D6(q) Φ2

1Φ2.
2A5(q) φ321 A1 × A1

5 Φ1.E7(q) Φ1.
2A5(q).2A2(q) φ321 ⊗ φ21 A1

It has been checked in [21, Lemma 6.9] that all relevant e-split Levi subgroups of
G satisfy CG(Z(L)F` ) = L. (In fact they all already occur in Lines 19–23 of Table 7
respectively in Line 43 of Table 8 in [21].) Furthermore, all relevant e-cuspidal characters
λ are readily seen to be of central `-defect. But then by [21, Prop. 2.13 and 2.15] the two
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Table 6. Quasi-isolated 5-blocks in E8(q), q ≡ ±2 (mod 5)

No. CG∗(s)
F LF CL∗(s)

F λ WGF (L, λ)

6 A5(q)A2(q)A1(q) Φ4.
2D6(q) Φ3

1Φ4.A2(q)A1(q) 6 chars Z4 × A1

7 GF CG∗(s)
F 18 chars 1

conditions in [21, Prop. 2.12] are satisfied and so for all relevant e-cuspidal pairs (L, λ) all
constituents of RG

L (λ) lie in a single 5-block bGF (L, λ). Moreover, Z◦(L)F ∩ [L,L]F is a
5′-group, hence by [21, Prop. 2.7(g)], in each case (Z(LF )`, bLF (λ)) is a centric bGF (L, λ)-
Brauer pair. If (L, λ) corresponds to Line 1 of Table 5, then by [21, Prop. 2.7(c)], a defect
group of bGF (L, λ) is an extension of Z(LF )` by a Sylow 5-subgroup of WGF (L, λ). In all
other cases, the relative Weyl group is a 5′-group, hence by [21, Prop. 2.7], (Z(L)F` , λ) is
a maximal bGF (L, λ)-Brauer pair, and in particular Z(L)F` is a defect group of bGF (L, λ).
Thus the defect groups of the various blocks are as described in [21, Thm 1.2].

Since the orders of the Sylow 5-subgroups of the various Z(L)F in Lines 2–5 are all
distinct, these lines correspond to different blocks. To see that the blocks represented
by the six characters of Line 6 are distinct, note that since L = CG(Z(L)F` ) and since
the pairs (L, λ) are not GF -conjugate, neither are the corresponding maximal Brauer
pairs (Z(L)F` , λ). The blocks corresponding to Line 7 are all of defect zero, hence are
distinct. �

Remark 6.6. Let us point out that in Table 6, as in Table 8 of [21] we suppressed the
Ennola dual situations (obtained by changing q to −q) for which all Harish-Chandra series
look completely similar since the congruence of q2 modulo 5 remains unchanged.

The above results show that [22, Thm. A, Thm. B] remain unchanged (note that Re-
mark 2.2(4) of [23] applies also to the isolated element s of order 6 above). We also obtain
the following consequences, completing the gap in the proofs of Theorem [21, Thm.1.1]
and [23, Main Thm] caused by the missing case.

Corollary 6.7. For s as above, the 5-blocks in E5(GF , s) with non-abelian defect group
have characters of positive height. Further, (GF , χ) is not a minimal counter-example to
(HZC1) for any semisimple 5-element t ∈ G∗F commuting with s and any χ ∈ E(GF , st).

Proof. As already discussed in the proof of Theorem 6.5, the block in Line 1 has non-
abelian defect groups (as the relative Weyl group has order divisible by 5) and the blocks
in all other lines have abelian defect groups. For the block in Line 1, the character in
E(GF , s) corresponding to the unipotent character ofA5(q)A2(q)A1(q) labelled by 41⊗2⊗1
has positive height. This proves the first assertion.

Suppose that s corresponds to Lines 6–7. The blocks in Line 7 are all of defect 0, and
all remaining characters in E5(GF , s) have the same 5-part in their degree, so are all of
height 0 in their respective blocks. In particular, the second assertion holds. Now suppose
that s corresponds to Lines 2–5. Here we may apply [21, Lemma 8.5(3)(b)] in conjunction
with [21, Prop. 8.6(1)] to conclude that the second assertion holds (see the argument in
the last part of the proof of [21, Prop. 8.8]). �
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Remark 6.8. We take the opportunity to repeat what we already pointed out in the proof
of Theorem 3.14 of [22]: in Table 4 of [21] each of the lines 6, 7, 10, 11, 14 and 20 give
rise to two e-cuspidal pairs and so to two distinct e-Harish-Chandra series, but the two
pairs also give rise to different blocks, and similarly lines 2, 5, 8 and 11 in Table 3 of [21]
give rise to three e-Harish-Chandra series and three different blocks. We thank Ruwen
Hollenbach for bringing this misprint to our attention.

6.3. Further correction to the block distribution for ` = 3. We discuss one more
issue connected to the tables of block distributions printed in [21]. In the accompanying
statements, we say that the block distribution is ‘indicated by the horizontal lines’ in the
tables, but in fact, as we prove, the block distribution is related to the numbered lines,
in the sense that all unnumbered lines below a numbered line fall into the block for the
numbered line. This amended formulation fails in two places, though: a misinterpretation
of the statement of [11] on unipotent blocks of groups of type E6 led to a wrong assignment
of certain e-Harish-Chandra series to 3-blocks. More concretely, we have the following:

Proposition 6.9. In each of the following two cases and their Ennola duals, the e-Harish-
Chandra series in the unnumbered line in the corresponding box of the table lies in the
semisimple (first) block of the box:

(1) GF = E7(q)sc, ` = 3, CG∗(s)
F = Φ1.E6(q).2, see [21, Tab. 4]; and

(2) GF = E8(q), ` = 3, CG∗(s)
F = E7(q).A1(q), see [21, Tab. 6].

The corrected parts of the tables are thus as shown in Table 7 and 8.

Table 7. Harish-Chandra series in some isolated 3-blocks of E7(q)sc, q ≡ 1 (mod 3)

No. CG∗(s)
F LF CL∗(s)

F λ WGF (L, λ)
8 Φ1.E6(q).2 Φ7

1 L∗F 1 E6.2
Φ1.E6(q) L∗F E6[θ±1] 2

9 Φ3
1.D4(q) L∗F D4[1] A2.2

Table 8. Harish-Chandra series in some isolated 3-blocks of E8(q), q ≡ 1 (mod 3)

No. CG∗(s)
F LF CL∗(s)

F λ WGF (L, λ)
3 E7(q)A1(q) Φ8

1 L∗F 1 E7 × A1

Φ2
1.E6(q) L∗F E6[θ±1] A1 × A1

4 Φ4
1.D4(q) L∗F D4[1] C3 × A1

5 Φ1.E7(q) L∗F E7[±ξ] A1

Proof. The arguments given in the proofs of [21] apply verbatim, when using the correct
interpretation of the block distribution for E6(q) and 2E6(q) from [11]. �
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The 3-block b labelled by Line 9 in Table 7 has non-abelian defect groups, and the
argument for b containing characters of different heights given in [23] is no longer valid
in view of the correction above since we cannot deduce the existence of a 3′-character
of positive height coming from a 1-Harish-Chandra series of non-central 3-defect. We
remedy this as follows. Let G ↪→ G̃ be a regular embedding. Then Z(G̃F )GF is a normal

subgroup of G̃F of 3′-index and Z(G̃F ) ∩ GF is a 3′-group. Hence it suffices to prove

that a block of G̃F covering b has characters of different 3-defect. By Bonnafé–Rouquier
it then suffices to prove that the corresponding unipotent 3-block, say B, of a group CF ,
with C in duality with CG̃∗(s̃) (s̃ a preimage of s in G̃∗F ) has characters of different
3-defect. Let (L, λ) be a unipotent 1-cuspidal pair of CF defining B and note that C (a

group of type E6) is a Levi subgroup of G̃, hence has connected centre. Let t ∈ CG̃∗(s̃)
be a 3-element with centraliser of type D5 and (Lt, λt) be a 1-cuspidal pair of CG̃∗(s̃t)
such that (Lt, λt) →t (L, λ) as in [11, Thm B]. Since CG̃∗(s̃t) does not contain a Sylow
3-subgroup of CG̃∗(s̃), the characters in the 1-Harish-Chandra-series of CG̃∗(s̃t)

F defined
by (Lt, λt) have 3-defect different from that of the characters in E(CF , (L, λ)). Then we
are done by [11, Thm B].

6.4. Proof of Theorems 3.1 and 3.2.

Proof of Theorem 3.1. Suppose first that s = 1. Then part (c) follows from [3] and
parts (a) and (b) follow from Theorems A and A.bis of [11] (see also Lemma 2.5). Parts (a),
(b) and (c) in case s is central follow easily from the s = 1 case. Now suppose that s is
non-central. If [G,G] is of type G2, F4 or E8, then there is an F -stable decomposition
G = [G,G] × Z◦(G). Hence parts (a), (b) and (c) follow from the analogous results in
[21] and Section 6.1, respectively.

The first assertion of part (f) follows as in Remark 2.2 and Section 4 of [22]. Note that
if ` is good for G, then all unipotent e-cuspidal pairs are of (quasi-)central `-defect. The
second assertion of part (f) follows from this and by inspection of the tables of [11] and
[21] and of Tables 3–8.

Parts (d) and (e) are implicit in the construction of the tables cited above. �

Proof of Theorem 3.2. The proof of part (a) follows along the same lines as that of The-
orem 3.4 of [22], with some simplifications coming from the fact that Z(X) is connected.
The only additional input required is the existence of an e-Harish-Chandra theory at
isolated elements and bad ` in the case [X,X] is of exceptional type which is provided
in this section. Here note that Lemma 3.1 of [22] is stated for all connected reductive
groups. Part (b) is immediate from part (a). Part (c) follows from (a) and the proof
of Theorem 3.6 of [22]. Part (d) follows from part (b) and [22, Lemmas 2.3 and 3.7,
Thm A(c)] and the remarks following Definition 2.12 of [22]. �

6.5. Decomposition of RG
L . We take the opportunity to resolve the last ambiguities left

in the determination of the decomposition of RG
L (λ) for certain unipotent characters λ in

exceptional groups of Lie type, viz. the cases denoted “15+16”, “40+41” and “42+43” in
[3, Tab. 2] (note that since the statements only concern unipotent characters, the precise
isogeny type of G is not relevant):
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Lemma 6.10. (a) Let L be a Levi subgroup of rational type 2E6(q).Φ2 in G of type E7.
Then

RG
L (2E6[θj]) = (E6[θj], 1)− (E6[θj], ε) for j = 1, 2.

(b) Let L be a Levi subgroup of rational type 2E6(q).Φ2
2 in G of type E8. Then

RG
L (2E6[θ]) = (E6[θ], φ1,0)− (E6[θ], φ′1,3)− (E6[θ], φ′′1,3) + (E6[θ], φ1,6)− 2E8[−θ]− 2E8[θ].

(c) Let L be a Levi subgroup of rational type E7(q).Φ2 in G of type E8. Then

RG
L (φ512,11) = φ4096,11 − φ4096,26 and RG

L (φ512,12) = φ4096,12 − φ4096,27.

Proof. In all three cases this follows from Shoji’s explicit description of Lusztig induction of
unipotent characters in terms of the Fourier transform [32]. In cases (a) and (c) we can also
provide a block theoretic argument. It will be sufficient to show the claim for one value of
q since by [3, Thm 1.33] the decomposition of Lusztig induction of unipotent characters is
generic. We choose q such that q+1 is divisible by a prime ` larger than 7, say q = 37, and
take ` = 19, so e`(q) = 2. The four unipotent characters λ = 2E6[θ], 2E6[θ2], φ512,11, φ512,12

considered are 2-cuspidal in their respective Levi subgroups and thus of `-defect zero. It
then follows by [5, Thm] that all constituents of RG

L (λ) lie in the same `-block of GF .
On the other hand, the two characters λ given in either case are not conjugate under any
automorphism of LF [17, Thm 4.5.11] and thus by [5] they label distinct blocks of GF .
It was already shown in [3] that in all cases RG

L (λ) has norm 2, and that the constituents
are among the ones listed in the statement. Thus we are done if we can show that the
stated decompositions agree with the `-block distribution.

For (a) consider the unipotent character ρ := E6[θ] of the split Levi subgroup L1 of
G = E7 of rational type E6(q).Φ1. It is 1-cuspidal, and its relative Hecke algebra in GF

is of type A1 with parameter q9 [17, Tab. 4.8]. Thus its Harish-Chandra induction RG
L1

(ρ)
is indecomposable modulo all primes ` dividing q9 + 1 by [17, Prop. 3.1.29], whence its
two constituents E6[θ], 1 and E6[θ], ε lie in the same `-block of GF . In case (c) it follows
from [18, Table F.6] that the block distribution is as claimed. �

7. Robinson’s conjecture on defects

Robinson’s conjecture on character defects [28] presented in the introduction was re-
duced to the case of minimal counter-examples in quasi-simple groups in [14, Thm 2.3]
based on work of Murai, and it was shown to hold for all odd primes ` and for the
2-blocks of any quasi-simple group not of exceptional Lie type in odd characteristic in
[14, 15]. Here, we investigate its validity in the following situation. Let G be a simple
algebraic group of simply connected type with a Frobenius map F such that G = GF is
of type G2(q), 3D4(q), F4(q), E6(±q), E7(q) or E8(q), for some odd prime power q. Let S
be a central quotient of G. Note that G = S unless possibly when G is of type E6 or E7.
Let B̄ be a block of S dominated by an isolated 2-block B of G.

Lemma 7.1. Suppose that G as above is of type E6 and let G ↪→ G̃ be a regular embed-
ding. Let S, B and B̄ be as above and let B̃ be a block of G̃F covering B. Then any one
of B, B̄ and B̃ satisfies Robinson’s conjecture if and only if any of the other two does.

Proof. Since Z(G) is a 2′-group, B and B̄ are isomorphic blocks, and in particular B and
B̄ have isomorphic defect groups and the same set of character degrees. Thus B satisfies
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Robinson’s conjecture if and only if B̄ does. Again, since Z(G) is a 2′-group and since

[G̃, G̃] = G, Z(G̃)FGF is a normal subgroup of odd index in G̃F , and thus B̃ satisfies

Robinson’s conjecture if and only if some (hence any) block, say C, of Z(G̃)FGF covering

B satisfies the conjecture. Since Z(G̃)F is central in Z(G̃)FGF , B and C have the same

set of character degrees. Moreover, since Z(GF ) = Z(G̃)F ∩GF is a 2′-group, if D is a

defect group of B, then Z(G̃)F2 D
∼= Z(G̃)F2 × D is a defect group of C. So C satisfies

Robinson’s conjecture if and only if B does. �

Proposition 7.2. Let B be a unipotent 2-block of G as above. Then the block B̄ of S is
not a minimal counter-examples to Robinson’s conjecture.

Proof. First assume B is the principal block of G. Then its defect groups are the Sylow
2-subgroups of G. Their centres are given in Table 9; here Tε denotes a torus of order
q − ε1, and E7(q) := E7(q)/Z(E7(q)).

Table 9. Centres of Sylow 2-subgroups P ∈ Syl2(S)

S CG(t) Z(P ) S CG(t) Z(P )
G2(q) A1(q)2 C2

2E6(q) 2D5(q).T− C|q+1|2
3D4(q) A1(q3)A1(q) C2 E7(q) D6(q)A1(q) C2

2

F4(q) B4(q) C2 E7(q) D6(q)A1(q) C2

E6(q) D5(q).T+ C|q−1|2 E8(q) D8(q) C2

This is obtained as follows. If P ∈ Syl2(G) and t ∈ Z(P ) then CG(t) has odd index in G
and Z(P ) ≤ P ≤ CG(t). The centralisers of semisimple elements in G can be enumerated
with the algorithm of Borel–de Siebenthal (see e.g. [26, 13.2]). It turns out that the only
centralisers CG(t) of 2-elements t ∈ G \ Z(G) of odd index in G are as listed in Table 9.
(In fact, these can also be found on the website [25].) Then |Z(P )| can be read off from

the structure of CG(t). If S = E7(q) then we may consider S as the derived subgroup of
an adjoint type group, and with the same argument as before we find that |Z(P )| = 2 in
this case.

By [14, Lemma 3.1] Robinson’s conjecture holds when |Z(P )| = 2. Thus, by Table 9
we only need to concern ourselves with S of type E6(q), 2E6(q), or S = E7(q). Let’s first
assume that G is of type E6. Then by Lemma 7.1 we may instead argue for the principal
block B̃ of G̃F . Now, by [4, Thm 12] for every χ ∈ Irr(B̃) there is a character of the
same height in the principal block of Gad := G̃/Z(G̃), a group of adjoint type. Note that
G and G̃/Z(G̃) have isomorphic Sylow 2-subgroups as G is a central extension of degree
dividing 3 of the derived subgroup of Gad. We may hence argue for the principal 2-block
of Gad; here G∗ad

∼= G.
Now, according to Enguehard’s description in [11, Thm B] a character χ ∈ E(Gad, t)

lies in the principal 2-block if and only if t ∈ G ∼= G∗ad is a 2-element and moreover the
Jordan correspondent of χ in E(CG(t), 1) lies in a Harish-Chandra series with Harish-
Chandra vertex either a torus or a Levi subgroup of type D4. First assume that χ
has Harish-Chandra vertex D4. Then H := CG(t) has a Levi subgroup of type D4

and hence is either of type D4, D5 or E6. In either case, [14, Prop. 6.2] shows that
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(|S|/χ(1))2 ≥ (q − 1)2
2 > |Z(P )| and we are done. If χ has trivial Harish-Chandra vertex

then by the same argument we are done when H has Fq-rank at least 2. Note that H has
Fq-rank at least 1 as by Table 9 every 2-element of G∗ad centralises a split torus of rank 1.
Now if H has Fq-rank 1, then all of its unipotent characters have odd degree, and it is
easy to see that (|S|/χ(1))2 ≥ 2(q − 1)2 > |Z(P )|.

The same discussion applies to G = 2E6(q) by interchanging the cases corresponding to
the two possible congruences of q modulo 4.

Now assume S = G = E7(q). Let χ lie in the principal 2-block B of G, so in E(G, t)
for some 2-element t ∈ G∗. If t = 1, so χ is unipotent, then by inspection def(χ) ≥ 3
unless χ lies in an ordinary Harish-Chandra series above a Levi subgroup of type E6, but
by [11, p. 354] these are not in the principal 2-block of G. Now assume t 6= 1, and let
t1 be the involution in 〈t〉. Then CG∗(t1) has one of the structures D6(q)A1(q), A7(±q).2
or E6(±q)(q ∓ 1).2. Assume CG∗(t) involves an E6-factor. Let G ↪→ G̃ be a regular

embedding, t̃ ∈ G̃∗F a preimage of t of 2-power order, and let B̃ be the principal block
of G̃F . By [11, Thm B] the characters in B̃ in series t̃ are those in Jordan correspondence
with unipotent characters of CG̃∗F (t̃) with a rational Frobenius eigenvalue. Thus, the
characters in B in series t are again among those in Jordan correspondence with unipotent
characters with a rational Frobenius eigenvalue, and by inspection all of these have defect
at least 3. So we may assume that CG∗(t) has only factors of classical type. Again by
using the lists of unipotent character degrees and arguing as before, one sees that all
characters in E(G, t)∩ Irr(B) are of defect at least 3, so B = B̄ is not a counter-example.

The non-principal unipotent 2-blocks of groups of exceptional type were determined
in [11]. In Table 10 we list those blocks having non-abelian defect groups, as well as
properties of their defect groups D which have also been taken from [11]. We label the
blocks by their Harish-Chandra vertex (L, λ) of quasi-central defect, in the notation of
loc. cit.

Table 10. Non-principal unipotent 2-blocks of non-abelian defect

G cond. ([L,L], λ) D |Z(D)|
E7(q) q ≡ 1 (4) (E6, E6[θ]), (E6, E6[θ2]) Z(q−1)2 .2 2

q ≡ 3 (4) (2E6,
2E6[θ]), (2E6,

2E6[θ2]) Z(q+1)2 .2 2
E8(q) q ≡ 1 (4) (E6, E6[θ]), (E6, E6[θ2]) Z2

(q−1)2
.22 ≤ 4

q ≡ 3 (4) (2E6,
2E6[θ]), (2E6,

2E6[θ2]) Z2
(q+1)2

.22 ≤ 4

Since the conjecture holds for blocks with |Z(D)| = 2 by [14, Lemma 3.1], we only need
to consider the 2-blocks B in E8(q). First from the list of unipotent degrees it is easy to
check that all unipotent characters χ in these blocks, as described in [11, Thm A], have
def(χ) ≥ 3. By [11, Thm B] all characters in E2(G, 1)∩Irr(B) have Harish-Chandra vertex
of type E6. Thus the centralisers of the relevant 2-elements 1 6= t ∈ G∗F contain either
an E6- or an E7-factor. Again, it is straightforward to verify that all such characters χ
have def(χ) ≥ 3, whence our claim holds. �
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We suspect that in fact the defect groups of the blocks B for E8(q) as in Table 10 are
isomorphic to Sylow 2-subgroups of G2(q), in which case their centres would have order 2
and the proof would be even easier.

Proposition 7.3. Let B be an isolated, non-unipotent 2-block of G in E2(G, s), with G
not of type E7. Assume C∗ := CG∗(s) has only factors of classical type. Then the block
B̄ of S is not a minimal counter-example to Robinson’s conjecture.

Proof. Let B be as in the statement. First assume G is not of type E6. Then S = G,
C∗ is connected, and Jordan decomposition on the level of G and of C = CF together
yield a defect preserving bijection E2(G, s) → E2(C, 1). Since C∗ (and hence also C) has
only factors of classical type, E2(C, 1) is a single 2-block, namely the principal block b0

of C, and by Proposition 3.3 so is E2(G, s). In particular, B is a minimal block, that is,
B contains a semisimple character in E(G, s). Then by [29, Prop. E] a defect group of B
is isomorphic to a Sylow 2-subgroup of C. Thus, if B is a counter-example then so is b0.
Since C is strictly smaller than G, this shows that B cannot be minimal.

Finally, if G is of type E6, then by Lemma 7.1 we may replace B by a block B̃ of G̃
instead and the same arguments go through. �

Lemma 7.4. Suppose that G is of type E8. Let s ∈ G∗ be isolated such that CG∗(s) is
of type E6A2 and let C be dual to C∗ := CG∗(s). There is a 2-defect preserving bijection
ψ : E2(GF , s)→ E2(CF , 1) which preserves 2-blocks.

Proof. Since the centre of a simply-connected covering of C is a 3-group, by [4, Thm 12], we
may replace C by its adjoint quotient C̄ = C/Z(C). By inspection of [21] and [11], both
E2(GF , s) and E2(C̄F , 1) contain exactly two 2-blocks. Let B be the minimal 2-block in
E2(GF , s). Now by Theorem 1, for any 2-element t ∈ CG∗(s)

F , the characters of E(GF , st)
which lie in B are precisely those whose Jordan correspondents in E(CG∗(st)

F , 1) lie in
e-Harish-Chandra series above e-cuspidal characters with rational Frobenius eigenvalue.
The same description applies to the characters in the principal block of C̄F by [11, Thm B].
The result follows by noting that the natural surjection C̄∗ → C∗ induces a bijection from
the set of conjugacy classes of 2-elements of C̄∗F to those of C∗F and that this surjection
induces isogenies between centralisers of corresponding elements, so in particular preserves
their orders. �

Proposition 7.5. Let B be an isolated, non-unipotent 2-block of G. Then the block B̄ of
S is not a minimal counter-example to Robinson’s conjecture.

Proof. Let B be isolated but not unipotent, labelled by a semisimple 2′-element 1 6= s ∈
G∗. By inspection of the tables in [21] the only cases where C∗ = CG∗(s) has factors of
exceptional type are for G of type E8 and C∗ of type E6A2. Thus by Proposition 7.3 we
only need to discuss these blocks, and the case when G has type E7.

First assume G is of type E7. According to [21, Tab. 4], the relevant 2-blocks are
those with C∗ := CG∗(s) of rational type A5(q)A2(q) or 2A5(q).2A2(q) (depending on the
congruence of q modulo 3). In both cases, E2(G, s) is a single 2-block by [21], with defect
group D isomorphic to a Sylow 2-subgroup of CG∗F (s)∗ by [29, Prop. E]. By Ennola
duality, it suffices to consider the case C∗ := C∗F ∼= A5(q)A2(q). Assume q ≡ 1 (mod 4).
Then, |Z(D)| = 2(q−1)2

2. By the description of centralisers of elements t of 2-power order
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in linear groups, any character in Lusztig series E(C∗, t) has defect at least log2(8(q−1)2
2).

Since the characters in E2(G, s) are in height preserving bijection to the characters of
E2(C, 1) via Jordan decomposition, where C := CF , B is not a counter-example. Now
consider the corresponding block B̄ of S = G/Z(G), with defect group D̄ = D/Z(G). By
inspection, |Z(D̄)| ≤ (q − 1)2

2. Since any character of B̄ is a character of B, and defects
decrease by 1, neither is the block B̄ a counter-example. Now assume q ≡ 3 (mod 4).
Then |Z(D)| = 23. Here any character in E(C∗, t) has defect at least 5. Furthermore,
D̄ = D/Z(G) has centre of order 22. Thus we may conclude as in the previous case.

It remains to consider the isolated blocks of E8 in series s with C∗ of type E6A2. The
defect groups of the minimal block B in E2(G, s) are isomorphic to Sylow 2-subgroups of
C, by [29, Prop. E]. Hence by Lemma 7.4 and its proof, if B is a counter-example, then
so is the principal block of CF , contradicting the minimality of B.

Finally, let B be the minimal block in E2(G, s) as above, see Table 11 (taken from [21,
Tab. 5]) and their Ennola duals. According to [21, Thm 1.2], the defect groups for B the
block No. 6 are meta-cyclic and hence Robinson’s conjecture holds by [30, Cor. 8.2].

Table 11. Isolated non-unipotent non-maximal 2-blocks in E8(q), q ≡ 1 (mod 4)

No. CG∗(s)
F LF CL∗(s)

F λ WGF (L, λ)

4 E6(q).A2(q) E6 L∗F E6[θ±1] A2

6 2E6(q).2A2(q) E7 Φ1Φ2.
2E6(q) 2E6[θ±1] A1

E8 CG∗(s)
F 2E6[θ±1]⊗ φ21 1

Now let B be the No. 4 block. As before, let C ≤ G be F -stable of type E6A2,
corresponding to C∗ under an identification of G with G∗. Let bLF (λ) be the 2-block
of LF containing λ. As explained in the proof of [21, Prop. 6.4], (Z(L)F2 , bLF (λ)) is
a B-Brauer pair. Moreover, by [21, Lemma 6.2], CGF (Z(L)F2 ) = LF ≤ CF . So, by
general block-theoretic considerations, letting d be the unique 2-block of CF such that
(Z(L)F2 , bLF (λ)) is a d-Brauer pair, there is a defect group R of d and a defect group P
of B such that Z(L)F2 ≤ R ≤ P . Also, note from the table entry for B that Z(L)F2 is of
index 2 in P . Thus, either R = Z(L)F2 or R = P . Since WGF (L, λ) ∼= WCF (L, λ) is not a
2′-group, R is not abelian by [21, Prop. 2.7(e)] and hence R = P .

Let C1 be the E6-subgroup of C and C2 the A2-subgroup of C. Then CF
1 CF

2 is normal
of index 3 in CF , CF

1 and CF
2 commute and CF

1 ∩ CF
2 is of order 3. It follows that

R = R1R2
∼= R1 × R2 with Ri a defect group of a 2-block of CF

i , i = 1, 2. Since
Z(L)F2 ≤ R ∩ CF

2 = R2 is of index 2 in R and Z(L)F2 is self-centralising in R, it follows
that R1 is trivial and hence Z(L)F2 is of index 2 in P = R = R2. Since |CF

2 |2 = 2|Z(L)F2 |,
P = R2 is a Sylow 2-subgroup of CF

2 . Now the result follows by Lemma 7.4 and its
proof. �

Complementing earlier investigations in [14, 15] this proves Robinson’s conjecture:

Proof of Theorem 3. According to [14, 15] a minimal counter-example would have to occur
as a quasi-isolated 2-block of an exceptional type quasi-simple group S in odd character-
istic. Note that the exceptional covering group 3.G2(3) was handled in [14, Thm. 3.6].
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By the defect group preserving Morita equivalences from [2], we can further restrict to
isolated blocks. Note that here the centre of GF is always cyclic, so the known gap in
[2] is not relevant. By the main result of [21] Robinson’s conjecture holds for blocks
with abelian defect groups, so we need not consider the Ree groups 2G2(q2). But now
Propositions 7.2 and 7.5 give the claim. �
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