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Abstract. We complete the proof of Brauer’s Height Zero Conjecture from 1955 by
establishing the open implication for all odd primes.
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1. Introduction

Brauer’s Height Zero Conjecture (BHZ), formulated in 1955 [7], has been one of the
most fundamental and challenging problems in the representation theory of finite groups.
Deeply influencing the research in the field, it is also a source of many developments in the
theory. If p is a prime and B is a Brauer p-block with defect group D of a finite group G,
R. Brauer proved that |G : D|p is the largest power of p dividing the degrees of all the
irreducible complex characters in B. (In this paper, np denotes the largest power of p
dividing the integer n.) Hence, if χ ∈ Irr(B), the set of irreducible complex characters
in B, then χ(1)p = |G : D|p phχ for some non-negative integer hχ called the height of χ.
The conjecture asserts that χ(1)p = |G : D|p for all χ ∈ Irr(B) if and only if D is abelian.
That is, hχ = 0 for all χ ∈ Irr(B) if and only if D is abelian.

The “if” implication of the Height Zero Conjecture was proven in [27], using the classifi-
cation of finite simple groups, after decades of contributions by many authors. The “only
if” implication was proven for p-solvable groups in [22]; for p = 2 and blocks of maximal
defect (that is, when D is a Sylow 2-subgroup of G) in [46]; and recently for principal
blocks, for every prime, in [37]. Furthermore, building upon work in [47], it was shown
in [45] that Brauer’s Height Zero Conjecture is implied by the inductive Alperin–McKay
condition on simple groups (a strong form of another main conjecture in our field). This
has enabled L. Ruhstorfer to recently prove the Height Zero Conjecture for p = 2 in [53].
However, the verification of the inductive Alperin–McKay condition on simple groups for
odd primes remains an enormous challenge.

In this paper we take a different approach and prove the open direction of Brauer’s
Height Zero Conjecture in the case that p is odd.

THEOREM A. Let G be a finite group, let p be an odd prime, and let B be a p-block
of G with defect group D. If χ(1)p = |G : D|p for all χ ∈ Irr(B) then D is abelian.

As discussed above, this implies:

COROLLARY. Brauer’s Height Zero Conjecture holds.

A key novelty of our approach is a combined use of new results on blocks of quasi-
simple groups as well as on permutation groups, which allows us to tightly control the
structure of a minimal counterexample to BHZ and overcome certain difficulties in prov-
ing extendibility of characters from normal subgroups that were encountered in previous
approaches.

There are, at least, two major obstacles for our approach. The first is to prove that
irreducible characters in p-blocks of quasi-simple groups lie in sufficiently many distinct
orbits under the action by their automorphism groups. We think that the following result
has independent interest and that it will be useful in the resolution of other problems.

THEOREM B. Suppose that p is an odd prime, S is a quasi-simple group, and b is a
p-block of S with non-cyclic defect groups. Then at least one of the following statements
holds.

(1) Irr(b) contains characters from at least three different Aut(S)-orbits; or
(2) all characters in Irr(b) have the same degree.
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In the presence of blocks with cyclic defect groups, or when all the irreducible characters
in b have the same degree (and therefore b is nilpotent in the sense of Broué–Puig), we
will instead use deep results by Koshitani–Späth, Broué–Puig and Külshammer–Puig
([31, 9, 33]) in order to prove Theorem A.

The second obstacle to our approach is inherent to Brauer’s Height Zero Conjecture
and independent of any road that is followed to prove it. Suppose that G is a finite group
and σ is an automorphism of order a power of p of G that stabilises a p-block B of G, a
defect group D of B, and a p-block bD of CG(D) that induces B. If D is abelian, Brauer’s
Height Zero conjecture (and the inductive Alperin–McKay condition) implies that all the
irreducible characters of B are fixed by σ if and only if σ acts trivially on D. In fact, we
will need a more sophisticated version of the following result for quasi-simple groups (see
Theorem 4.1).

THEOREM C. Suppose that p is an odd prime and that S is a quasi-simple group
such that Z(S) is a cyclic p′-group. Let b be a p-block of S with abelian defect group D.
Suppose that σ is an automorphism of S of p-power order that fixes all the irreducible
characters of b, normalises D, and stabilises a block bD of CS(D) that induces b. Then σ
acts trivially on D.

In Section 2, we prove the needed result on permutation groups and other technical
results that we will use in the proof of Theorem A. In Section 3, we prove Theorem B.
Section 4 is devoted to the proof of a refined version of Theorem C and its needed gener-
alisations. Finally, in Section 5, Theorem A is proved. As was the case in the proof of the
other direction of BHZ, as well as the cases of maximal defect for p = 2 and for principal
blocks, our proof (including the result on permutations groups that we have mentioned
as well as Theorems B and C) relies on the Classification of Finite Simple Groups.

2. Preliminary results

In this section, we first prove a consequence of [21] that we will use in the proof of
Theorem A.

Theorem 2.1. Let p > 2 be a prime, n > 1, and let G < Sym(Ω) = Sn be a subgroup
such that G = Op′(G) 6= 1. Then there is a partition

Ω = ∆1 t∆2 t∆3,

with |∆1|, |∆2| > 0 and |∆3| ≥ 0 such that the index of ∩3
i=1 StabG(∆i) in G is divisible

by p. Moreover, one can choose this partition to have ∆3 = ∅, unless G has a simple
quotient S such that one of the following holds:

(1) S = Aaps−1 with 1 ≤ a ≤ p− 1, s ≥ 1 and (a, s) 6= (1, 1); or
(2) p = 3 and S = C3 or SL3(2).

Proof. (i) First we consider the case that G is primitive on Ω. In this case, applying [21,
Thm 2] we obtain a partition Ω = ∆1 t ∆2 with p | [G : ∩2

i=1 StabG(∆i)], unless G has
a simple quotient S and (S, p) are as in (1), in fact with S = An acting on n = aps − 1
points, or we are in (2), in fact with G = ASL3(2) or AΓL1(8), acting on the 8 vectors of
F3

2 = 〈e1, e2, e3〉F2 .
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In the former case, choosing

∆1 = {1}, ∆2 = {2, 3, . . . , p}, ∆3 = {p+ 1, p+ 2, . . . , n},
we have

[G :
3⋂
i=1

StabG(∆i)] = p

(
n

p

)
.

In the latter case, choosing

∆1 = {0}, ∆2 = {e1, e2}, ∆3 = F3
2 r {0, e1, e2},

we see that StabG(∆i) has order dividing 8 and so its index in G is divisible by p = 3.

(ii) Now assume that G is transitive but imprimitive on Ω. Let Ω = ∪mi=1Ωi be a G-
invariant partition of Ω, with 1 ≤ |Ωi| = n/m < n, and m chosen to be smallest possible
subject to these conditions. Let B := ∩mi=1 StabG(Ωi) be the base subgroup. Then G/B
permutes the m > 1 blocks Ωi transitively, so 1 6= G/B. Since G = Op′(G), we again have
G/B = Op′(G/B). Now G/B satisfies the assumptions on G, and G/B acts transitively,
faithfully, and primitively (by minimality of m) on {Ω1, . . . ,Ωm}. A desired partition for
G/B on this set gives rise to a desired partition on Ω.

(iii) Finally, we consider the case G acts intransitively on Ω = {1, . . . , n}. Suppose that
Ω1, . . . ,Ωm are all G-orbits on Ω, and let Ki denote the kernel of G acting on Ωi. Since
G 6= 1, G must act non-trivially on at least one Ωi. So we may assume that 1 6= G/K1.
But G = Op′(G), so p divides |G/K1|, and in fact G/K1 = Op′(G/K1). Now G/K1

satisfies the assumptions on G, and G/K1 acts transitively (and faithfully) on Ω1. If
Ω1 = ∆1 t∆2 is a desired partition for G/K1, then

Ω = ∆1 t
(
∆2 ∪ (Ω r Ω1)

)
is a desired partition for G. If Ω1 = ∆1 t ∆2 t ∆3 is a desired partition for G/K1 with
∆3 6= ∅, then

Ω = ∆1 t∆2 t
(
∆3 ∪ (Ω r Ω1)

)
is a desired partition for G. �

For the first part of Theorem 2.1, see also [16, Lemma 3.2].
Next we study the structure of some almost simple groups. In the case S̄ is a simple

group of Lie type, we will use the notation Inndiag(S̄) as described in [23, Thm 2.5.12];
for other simple groups S̄ we use the convention that Inndiag(S̄) = S̄.

Proposition 2.2. Let p be an odd prime and let S be a quasi-simple group. Let S̄ :=
S/Z(S), S̄ ≤ H ≤ Aut(S), and assume that Op′(H/S̄) = H/S̄.

(a) Then H/S̄ has a normal p-complement.
(b) Suppose that p ≥ 5 and that S is not of Lie type An, 2An. Then H/S̄ is a cyclic

p-group. The same is true if p = 3 but S is not of Lie type An, 2An, D4 or E6(εq)
with 3|(q − ε), ε ∈ {±1}.

(c) In general, if H ≤ Inndiag(S̄) then H/S̄ is a cyclic p-group.

Proof. (i) Note that H/S̄ is embedded in Out(S̄). If S̄ is an alternating or sporadic simple
group, then Out(S̄) is a 2-group and hence the statements are obvious. Suppose that S̄
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is a simple group of Lie type. In this case, the structure of Out(S̄) is described in [23,
Thm 2.5.12], and we will now verify (a) and (b).

Assume in addition that S is not of type D4 when p = 3. Then the assumption
Op′(H/S̄) = H/S̄ implies that H̄ := H/S̄ is contained in O o A, where O = Outdiag(S̄)
is abelian and A is a cyclic p-group. In particular, (a) holds in this case. Given the
assumptions in (b), we have that either O is a cyclic p′-group of order at most 4, or S
is of type D2m and O is a Klein 4-group. In the former case, Aut(O ∩ H̄) is of order at
most 2. Hence H̄ centralises O∩ H̄, O∩ H̄ ≤ Z(H̄), and H̄/(O∩ H̄) ↪→ A is cyclic. Thus
H̄ is abelian, with cyclic Sylow p-subgroup, and the statement follows. In the latter case,
A centralises O (see [23, Thm 2.5.12(h)]), so again H̄ is abelian, and we are again done.

Now we complete the proof of (a) in the case S is of type D4 over Frf , where r is any
prime, and p = 3. In this case, Out(S̄) = Oo(Cf×S3), so H̄ is contained in Oo(Ce×C3),
where e is the 3-part of f . Since O = 1 or O = C2 × C2, the claim follows.

(ii) For (c), just note that Inndiag(S̄)/S̄ is either cyclic or of p′-order. �

Next we prove some results on blocks that will be useful later on. Our notation for
block theory mostly follows [44].

Lemma 2.3. Suppose that N E G and let b be a G-invariant block of N with defect
group D. Let bD be a block of DCN(D) inducing b with defect group D. Let T be the
stabiliser of bD in NG(D). If B is a block of G covering b, then there is a defect group
D0 of B such that D0 ∩ N = D and D0 ≤ T . Also, NG(D) = NN(D)T . Furthermore,
T = (T ∩N)D0 if G/N is a p-group.

Proof. Since b is G-invariant, we have G = NNG(D) by the Frattini argument. Now

b0 = b
NN (D)
D is the Brauer First Main correspondent of b. Since b is NG(D)-invariant, it

follows that b0 is NG(D)-invariant by the uniqueness in the Brauer correspondence. By
the Harris–Knörr correspondence [44, Thm 9.28], let B0 be the unique block of NG(D)
that induces B and covers b0. Let D0 be a defect group of B0, which by [44, Thm 9.28] is
a defect group of B. By Knörr’s theorem [44, Thm 9.26], we have D0∩NN(D) is a defect
group of b0, and therefore D0∩N = D0∩NN(D) = D. Since b0 is NG(D)-invariant and b0

covers an NN(D)-orbit of blocks of DCN(D), we have NG(D) = NN(D)T by the Frattini
argument, where recall that T is the stabiliser of bD in NG(D). By the Fong–Reynolds
Theorem 9.14 of [44], there exists an NG(D)-conjugate of D0 contained in T .

Suppose then that Dx
0 ≤ T , where x ∈ NG(D), and Dx

0 is a defect group of bT , the block
of T which is the Fong–Reynolds correspondent of B0 over bD. Then Dx

0 is a defect group
of B. Also Dx

0 ∩N = (D0 ∩N)x = Dx = D, and this proves the first part. For the final
part, notice that T/(T ∩ N) is a p-group. Furthermore, (bD)T∩N is the Fong–Reynolds
correspondent of b0 over bD. By uniqueness, it follows that (bD)T∩N is T -invariant (using
that b0 and bD are T -invariant). Also, notice that (bD)T∩N is the only block of T ∩ N
covering bD, using [44, Cor. 9.21]. We conclude that bT covers (bD)T∩N , a block with
defect group D. Since (bD)T∩N is T -invariant and bT is the only block of T covering it
([44, Cor. 9.6]), we have T = (T ∩N)Dx

0 , by [44, Thm 9.17], for instance. �

Proposition 2.4. Let N E G and let B be a p-block of G with abelian defect groups.
Suppose that G/N is a p-group and that B covers a G-invariant block b of N with defect
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group D. Suppose bD is a block of CN(D) with defect group D that induces b. If x ∈
NG(D) is a p-element that fixes bD, then [x,D] = 1.

Proof. Since B has abelian defect groups, notice that D is abelian by Knörr’s theorem
[44, Thm 9.26]. Let T be the stabiliser of bD in NG(D). By Lemma 2.3, there is a defect
group D0 of B such that D0 ∩N = D, D0 ≤ T , and T = (T ∩N)D0. Since by hypothesis
D0 is abelian, we have T = (T ∩ N)CT (D). Then (T ∩ N)/CN(D) is a p′-group by [44,
Thm 9.22]. Therefore T/CT (D) is a p′-group, and the result follows. �

Recall that a block B of a finite group G is called quasi-primitive if whenever N EG,
then B covers a unique block of N .

Proposition 2.5. Suppose that B is a quasi-primitive p-block of a finite group G such
that all the irreducible characters of B have height zero. Let N E G and let b be a block
of N covered by B. If θ ∈ Irr(b), then |G : Gθ| is not divisible by p.

Proof. We use Dade’s group K = G[b]. (See, for instance, [43] for an introduction to this
object.) Then all the irreducible characters of b are K-invariant, see [30, Lemma 3.2(a)],
for instance. In particular, θ is K-invariant. Also, KEGb = G, where Gb is the stabiliser
of b in G. Also if B′ is the (unique) block of K covered by B, then B′G = B and B is
the only block of G covering B′. (See [43, Thm 3.5].) Since B covers b, let χ ∈ Irr(B)
be over θ. Let η ∈ Irr(K) be under χ and over θ. Since χ is over η, it follows that the
block of η is necessarily B′. By hypothesis, B′ is G-invariant. By [44, Cor. 9.18], we
have |G : Gη| is prime to p. Since ηN = vθ for some v ≥ 1, it follows that Gη ≤ Gθ and
therefore |G : Gθ| is also not divisible by p. �

In order to prove Theorem A, we will need the block theory above a nilpotent block,
and above a block with cyclic defect group.

Theorem 2.6. Let G be a finite group, and NEG. Let b be a G-invariant nilpotent block
of N with defect group Q. Then there exist a p-subgroup P of G such that Q = P ∩ N ,
a finite group L with a Sylow p-subgroup P , a central p′-extension L′ of L by Z ≤ Z(L′)
and µ ∈ Irr(Z), such that:

(a) PN/N ∈ Sylp(G/N).
(b) We have Q E L and G/N ∼= L/Q. If |Z(G)| is not divisible by p, Z(G) ≤ N and

QZ(G) < N , then |L′ : Z(L′)| < |G : Z(G)|.
(c) There is a bijection B 7→ B′ between the blocks of G that cover b and the blocks of L′

that cover the block of µ preserving defect groups. Also, there is a height preserving
bijection Irr(B)→ Irr(B′).

Proof. These are consequences of the theory of blocks above nilpotent blocks developed
in [33]. This is also described in Section 8.12 of [34]. (See also Section 7.2 of [54]). The
existence of P , the fact that P ∩N = Q and that PN/N is a Sylow p-subgroup of G/N
follow from 8.12.5 and 8.12.6 of [34]. The existence of L and the fact that P ∈ Sylp(L),
that Q E L and that L/Q ∼= G/N are part of the statement in 8.12.5. Theorem 8.12.5
also provides a bijection between the blocks of G covering b and the blocks of a certain
twisted group algebra OαL of L, and corresponding blocks are Morita equivalent (see
Remark 8.12.8). In Remark 8.12.8, the existence of L′ and the relationship with OαL is
given.
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Corollary 9.2.5 of [34] says that a perfect isometry preserves heights, and any of Corol-
lary 9.3.3 or 9.3.4 imply that a Morita equivalence induces a perfect isometry. Then 9.7.1
of [34] implies that any Morita equivalence given by a bimodule with source of rank prime
to p induces isomorphisms between defect groups. This is restated as part of 9.11.2 of of
[34].

This covers all but the last inequality in (b). So, assume |Z(G)| is not divisible by p,
Z(G) ≤ N and QZ(G) < N . Then

|L′ : Z(L′)| ≤ |L| = |G/N ||Q| = |G/N ||QZ(G) : Z(G)| < |G : Z(G)|. �

Theorem 2.7. Suppose N EG are finite groups, B is a p-block of G with defect group D
covering a G-invariant block b0 of N , where p is odd. Suppose that N is the central product
of the G-conjugates of a component S of G. Suppose that the block b0 covers the block b of
S and that D0 = D ∩S is cyclic and non-central in S. Let D1 = D ∩N , and let b1 be the
block of NN(D1) that induces b0. Let B1 be the block of NG(D1) with defect group D that
covers b1 and induces B. If all characters in Irr(B) have height zero, then all characters
in Irr(B1) have height zero.

Proof. By [31, Thms 1.1 and 7.6], the block b of S satisfies the inductive Alperin–McKay
condition. (In fact, the “intermediate subgroup” in [31, Def. 7.2], is the normaliser of the
corresponding defect group.) We apply Theorem 6.1 and Proposition 6.2 of [45], noticing
that we do not need to assume that the simple group S/Z(S) satisfies the inductive
Alperin–McKay condition, because we know that blocks of S involved in our statement
have cyclic defect groups (and therefore satisfy the inductive Alperin–McKay condition).
Notice that D1 is a p-radical subgroup of N since it is the defect group of b1. If f is any
block of N with defect group D1, using that N is the central product of G-conjugates
of S, then f covers a unique block of S with defect group D1 ∩ S = D0, which is cyclic.
Hence, by [45, Prop. 6.2], there is an NG(D1)-equivariant bijection

Ω : Irr(N |D1)→ Irr(NN(D1)|D1)

such that
(Gθ, N, θ) ∼b (NG(D1)θ′ ,NN(D1), θ′)

for every θ ∈ Irr(b0), where θ′ = Ω(θ). (Here Irr(N |D1) is the set of characters of N
belonging to blocks with defect groupD1. The definition of block isomorphism of character
triples denoted above with ∼b is given in [45, Def. 3.6].) Now, we apply [45, Cor. 3.10] to
construct a height preserving bijection Irr(B|θ) → Irr(B1|θ′). Since Ω(Irr(b0)) = Irr(b1)
by [45, Thm 6.1(b)], we easily conclude that all irreducible characters in B1 have height
zero. �

The following gives a shorter proof of a generalisation of the main result of [32].

Theorem 2.8. Suppose that N,M E G with G = NM . Let B be a block of G which
covers a unique block bN∩M of N ∩M . Then there is a defect group D of B such that
D = (D ∩N)(D ∩M).

Proof. We argue by induction on |G : N |+ |G : M |+ |G|. We may assume that N,M < G.
Let bN be a block of N covered by B and bM a block of M covered by B, both covering
bN∩M . Let T = GbN be the stabiliser of bN , and by the Fong–Reynolds theorem, let bT
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be the block of T that induces B and covers bN . If T < G, then by induction there is a
defect group D of bT (and therefore of B) such that

D = (D ∩N)(D ∩ T ∩M) ≤ (D ∩N)(D ∩M).

We thus may assume that bN and bM are G-invariant.
Now, let us fix D a defect group of B. Let X = M ∩ ND, so that X/(N ∩M) is a

p-group. Thus bN∩M is covered by a unique block bX of X. Also the unique block bND
that covers bN has defect group D by Problem 9.4 of [44]. If ND < G, by induction there
is n ∈ ND such that

Dn = (Dn ∩N)(Dn ∩X) = (D ∩N)n(D ∩X)n,

using that X END. Hence

D = (D ∩N)(D ∩X) ≤ (D ∩N)(D ∩M).

So we may assume G = ND = MD; in particular, G/N and G/M are p-groups.
Suppose that N ≤ Y EG, where Y < G, and let bY be the unique block of Y covering bN .

Let Z = M ∩ Y , and let bZ be the unique block of Z covering bN∩M . Thus bZ is G-
invariant, and covered by B. By induction, there is a defect group D1 of B such that
D1 = (D1 ∩ Y )(D1 ∩M). Now, since bY is G-invariant, we have D1 ∩ Y is a defect group
of bY . Again by induction, there is y ∈ Y such that

Dy
1 ∩ Y = (Dy

1 ∩N)(Dy
1 ∩ Z).

Hence, D1 ∩ Y = (D1 ∩N)(D1 ∩ Z). Thus D1 = (D1 ∩N)(D1 ∩M), and we are done.
So we may assume |G : N | = p = |G : M |. Also, G = (N ∩ M)D, using Fong’s

Theorem 9.17 of [44]. Since G = (N ∩M)D, we have that N = (N ∩M)(N ∩ D) and
M = (N ∩M)(M ∩D). In particular N ∩D 6= M ∩D. Since D/(D∩N ∩M) is Cp×Cp,
we necessarily have D = (D ∩N)(D ∩M). �

Corollary 2.9. Suppose that G = S1 ∗ · · · ∗ Sm is a central product of its subgroups Si,
1 ≤ i ≤ m. If B is a block of G with defect group D, then D = (D ∩ S1) · · · (D ∩ Sm).

Proof. Use induction on m and Theorem 2.8. (See also Lemma 7.5 of [54].) �

The following elementary result will be used in the final step of our proof of Theorem A.

Lemma 2.10. Suppose that N EG are finite groups with G/N a p-group. Let QEG be
such that Q ∩N = 1. Let b be a G-invariant block of N and let B be the block of G that
covers b. Let b̄ be the unique block of NQ/Q which corresponds to b under the natural
isomorphism, and let B̄ be the unique block of G/Q that covers b̄. Then D/Q is a defect
group of B̄.

Proof. We know that the block B̄ is contained in a unique block B̃ of G. (See the remark
before Theorem 7.6 of [44].) Let E/Q be a defect group of B̄. Let τ ∈ Irr(b), and consider

γ := τ × 1Q ∈ Irr(N ×Q).

The block of N × Q that contains γ is only covered by B by [44, Cor. 9.6]. Then γ,
considered as a character of NQ/Q, lies in b̄. Let ψ ∈ Irr(B̄) over γ. Then ψ, considered as
a character of G, lies over τ , and therefore ψ ∈ Irr(B). It follows that Irr(B)∩Irr(B̄) 6= ∅,
and hence B̄ is contained in B. (See the remark before Theorem 9.9 of [44].) Consequently,
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B̃ = B. By [44, Thm 9.9(a)], we have E/Q ≤ D/Q. Notice that b̄ is G-invariant by
uniqueness. Therefore (E/Q)(NQ/Q) = G/Q by [44, Thm 9.17]. By the same reason,
DN = G. Also, (E/Q) ∩ (NQ/Q) is a defect group of b̄, and D ∩ N is a defect group
of b (by [44, Thm 9.26]). In particular, |E ∩ NQ| = |Q||D ∩ N |. Then |E/Q| = |G :
NQ||D ∩N | = |D/Q|, and the proof is complete. �

3. Orbits of characters in a block

In this section, we prove Theorem B, which we now restate.

Theorem 3.1. Suppose that p is an odd prime, S is a quasi-simple group and b is a
p-block of S with non-cyclic defect groups. Then at least one of the following statements
holds:

(1) There exist characters α, β, γ ∈ Irr(b) that belong to three different Aut(S)-orbits; or
(2) all characters in Irr(b) have the same degree.

We remark that in the proof of Theorem A in Section 5, Theorem 3.1 is only needed
for blocks with abelian defect groups. However, the more general statement may be of
independent interest, and its proof is not substantially different. We also remark that the
assumption of non-cyclic defect groups is needed. For example, for certain values of q
with p || (q− 1), there is a cyclic quasi-isolated block of SL2(q) with characters from only
two Aut(SL2(q))-orbits.

Throughout, for A a group acting on a group G as automorphisms and a block b of G,
we write kA(b) for the number of distinct A-orbits of characters of G whose intersection
with Irr(b) is non-empty. In the situation of Theorem 3.1, our aim will be to show

kAut(S)(b) ≥ 3.

We also use cd(b) to denote the set of distinct character degrees in Irr(b).

3.1. Initial considerations. We begin by considering cases that can be completed more
computationally.

Proposition 3.2. Let p ≥ 3 be a prime, S a quasi-simple group such that S/Z(S) is
one of the sporadic simple groups, the Tits group 2F4(2)′, G2(2)′, 2G2(3)′ = L2(8), or a
simple group of Lie type with exceptional Schur multiplier. Let b be a p-block for S with
non-cyclic defect and |cd(b)| > 1. Then kAut(S)(b) ≥ 3. In particular, Theorem 3.1 holds
for these groups.

Proof. This can be seen using the GAP Character Table Library [19]. We note that the
groups with exceptional Schur multipliers are listed in [23, Tab. 6.1.3]. �

Proposition 3.3. Let p ≥ 3 a prime and let S be quasi-simple such that S/Z(S) = An,
with 5 ≤ n ≤ 8. Then |cd(b)| ≥ 3 for every non-cyclic p-block b of S. In particular,
Theorem 3.1 holds for these groups.

Proof. This can again be seen using GAP and the GAP character table library. �

Proposition 3.4. Let S = Ân be the double cover of the alternating group An, with n ≥ 9.
Suppose that p ≥ 3 is a prime and let b be a p-block of S with non-cyclic defect groups.
Then kAut(S)(b) ≥ 3. In particular, Theorem 3.1 holds for these groups.
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Proof. Recall that Aut(S) = Sn. If b is a p-block of An, then kSn(b) ≥ k(̃b)/2, where b̃

is a p-block of Sn above b. By [51, Prop. 11.4], we have k(̃b) = k(p, w), where w is the

so-called weight of b̃ and k(p, w) is as in [51, (3.11)]. But note that k(p, w)/2 > 2 for
p ≥ 3 and w ≥ 2. Hence kSn(b) ≥ 3.

If, instead, b is a block of S lying over the (unique) non-trivial character of Z(S),

then kŜn(b) ≥ k(̃b)/2, where now b̃ is a so-called spin block of Ŝn above b and Ŝn is a
double cover of Sn inducing all automorphisms of S. In this case, we have an analogous

invariant k(̃b) = k̂±(p̄, w) (see [51, Prop. (13.4)]). Since b is non-cyclic, we have w > 1,

and using the definitions in [51, Sec. 13], we see again that k̂±(p̄, w)/2 > 2, and we have
kAut(S)(b) ≥ 3 as desired. �

We also need to consider the groups of Lie type that arise as the fixed points of a
simple, simply connected linear algebraic group under a Steinberg endomorphism but are
not quasi-simple. Throughout, we let

(3.4.1) E := {SL2(2), SU3(2), Sp4(2)}.

Proposition 3.5. Let p ≥ 3 and B a p-block of a group G ∈ E, with positive defect.
Then |cd(B)| ≥ 2. If B is non-cyclic, then |cd(B)| ≥ 3.

Proof. This can be seen using the GAP character table library. �

We remark that the groups SL2(3), G2(2), 2B2(2), 2G2(3), and 2F4(2), which also occur
as fixed points of simple, simply connected groups but are not quasi-simple, also satisfy
the above statement, with the exception of the cyclic 3-blocks of SL2(3). However, we
will not need this here.

Next, we deal with the Suzuki, Ree, and triality groups.

Proposition 3.6. Let S be quasi-simple such that S̄ := S/Z(S) is a Suzuki, Ree, or
triality group 2B2(q2), 2G2(q2), 2F4(q2), or 3D4(q). Let p ≥ 3 be a prime and let b be a p-
block of S with non-cyclic defect groups. Then kAut(S)(b) ≥ 3. In particular, Theorem 3.1
holds for these groups.

Proof. Note that the Schur multiplier of S̄ is trivial or S was considered already in Propo-
sition 3.2, so we assume S̄ = S. First suppose p | q2, so that S = 2G2(q2) or 3D4(q). Then
by a theorem of Humphreys [25], S has exactly two blocks, namely the principal block
and a block of defect zero containing only the Steinberg character. By observing the list
of unipotent character degrees in [14, Sec. 13.9], we see that there are at least 3 distinct
character degrees in the principal block.

Now suppose 3 ≤ p - q2. Then Sylow p-subgroups of 2B2(q2) and 2G2(q2) are cyclic. Let
S = 2F4(q2), with q2 = 22f+1. Here from [35, Bem. 1], if p - (q2−1), then each semisimple
p′-element s in the dual group S∗ defines a unique block of positive defect containing the
Lusztig series E(S, s). If p | (q2− 1), such an s defines a unique block of positive defect if
s is of class type t2 or t3, and three such blocks for s = 1 or of type t1 in the notation of
[56]. In the latter two cases, only one of the three blocks has non-cyclic defect. In each
case, we can see from the centraliser structures and conjugacy class types in [56], together
with the fact that field automorphisms permute Lusztig series via E(S, s)α = E(S, sα

∗
)

for α∗ ∈ Aut(S∗) dual to α (see [48, Cor. 2.4]) that there are at least three characters in
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the relevant blocks that cannot be conjugate under field automorphisms of S. In the case
that S = 3D4(q), we may argue similarly to above, taking into consideration the results
of [15, Lemma 5.9] and the structure of centralisers and tori discussed in loc. cit. �

3.2. Reducing to quasi-isolated blocks. Let p be an odd prime and let G be a simple
algebraic group of simply connected type over Fr for some prime r. Let q be a power
of r and F : G → G a Frobenius endomorphism with respect to an Fq-structure. Write
G := GF for the corresponding finite reductive group.

Let ι : G ↪→ G̃ be a regular embedding as in [12, (15.1)] (see also [20, Sec. 1.7]), and

write G̃ := G̃F . Let (G∗, F ) be dual to (G, F ), so that G∗ is simple of adjoint type, and

let (G̃∗, F ) be dual to (G̃, F ). We will write G∗ := G∗
F

and G̃∗ := G̃∗F . We further have

a dual F -equivariant epimorphism ι∗ : G̃∗ � G∗ induced by ι. Now, with this setting,

Aut(G) is induced by G̃ o D, where D is the group generated by appropriately chosen
graph and field automorphisms (see e.g. [23, Thm 2.5.1]).

The set Irr(G) is a disjoint union of Lusztig series E(G, s) (also called rational series),
where s runs over G∗-conjugacy class representatives of semisimple elements of G∗. If

s̃ ∈ G̃∗ is such that ι∗(s̃) = s, then the series E(G, s) consists of the constituents of the

restrictions of the characters in E(G̃, s̃) to G (see [12, Prop. 15.6]).
We next consider the case of groups of Lie type in defining characteristic, i.e., when

r = p.

Proposition 3.7. Assume S is quasi-simple such that S/Z(S) is a simple group of Lie
type defined in characteristic p ≥ 3. Let b be a p-block of S with non-cyclic defect groups.
Then kAut(S)(b) ≥ 3. In particular, Theorem 3.1 holds for these groups.

Proof. Let G = GF be as above such that S̄ := S/Z(S) = G/Z(G). We may assume G
is the full covering group of S̄, as the exceptional covers have been discussed in Proposi-
tion 3.2, and that S̄ is not of Suzuki or Ree type, from Proposition 3.6. By applying [44,
Thm 9.9], it suffices to prove the statement for G, since p - |Z(G)|. Now, every p-block
of G is either maximal defect or of defect zero [25], and the blocks of maximal defect are
in bijection with the characters of Z(G), via their central character. Let θ ∈ Irr(Z(G))
correspond to b.

Given this, and by inspection of the character tables for SL2(q), SL3(εq), and Sp4(q)
(see [20, Tab. 2.6 and references in Tab 2.4]), we see there are at least three character
degrees for each block of positive defect in these cases, so we further assume that G is not
one of these groups. Furthermore, we may assume Z(G) 6= 1 as any non-solvable group
has at least four irreducible characters.

Let T ≤ G be a maximal torus. We claim that there is s ∈ T ∗, a maximal torus
of G∗ in duality with T , such that the characters in the (rational) Lusztig series E(G, s)

lie above θ. Indeed, as Z(G) ≤ T there is θ̃ ∈ Irr(T ) with θ̃|Z(G) = θ, and then by the

character formula, also RG
T (θ̃)|Z(G) = RG

T (θ̃)(1)θ. So taking (T ∗, s) dual to (T, θ) we find s

as claimed. Again by the character formula, RG
T (µθ̃)|Z(G) = RG

T (µθ̃)(1)θ for all µ ∈ Irr(T )
with µ|Z(G) = 1, and so by duality RG∗

T∗ (st)|Z(G) = RG∗
T∗ (st)(1)θ for all t ∈ T ∗ ∩ [G∗, G∗]

(see the proof of [47, Lemma 4.4(ii)]). Note we may choose s =: s1 to have order only
divisible by primes dividing |G∗ : [G∗, G∗]| = |Z(G)|.
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As G is not of types A1, A2,
2A2, B2 there are at least two Zsigmondy primes `2, `3

dividing |G∗| but not |Z(G)|. Applying the above claim to suitable maximal tori Ti ≤ G,
i = 2, 3, we may choose semisimple elements si with order divisible by `i and possibly
by some primes dividing |G∗/[G∗, G∗]|. This ensures that |si|, i = 1, 2, 3, are pairwise
distinct. Hence the disjoint series E(G, si), i = 1, 2, 3, contain distinct characters above θ
not conjugate under Aut(G) by [48, Cor. 2.4], completing the proof. �

Given Proposition 3.7, we now assume that r 6= p for the remainder of Section 3.

If s ∈ G∗ is a p′-element, as is customary we write Ep(G, s) for the union
⋃
t E(G, st)

where t ranges over the p-elements of G∗ commuting with s. Then Ep(G, s) is a union of
p-blocks of G, and for each block B with Irr(B) ⊆ Ep(G, s), we have Irr(B) ∩ E(G, s) is
nonempty (see [12, Thm 9.12]). At times, we will write E(G, p′) to denote the union of
the series E(G, s) for s ∈ G∗ ranging over semisimple p′-elements.

A fundamental result of Bonnafé–Rouquier [5] yields that the blocks in Ep(G, s) are
Morita equivalent to so-called quasi-isolated blocks of suitable Levi subgroups. In the
more general setting of a finite reductive group H := HF , that is, the fixed points of a
connected reductive group H under a Frobenius morphism F : H→ H endowing H with
an Fq-rational structure, a block of H is called quasi-isolated if it lies in Ep(H, s) for a
semisimple p′-element s ∈ H∗ such that CH∗(s) is not contained in any proper F -stable
Levi subgroup of H∗. (In such a situation, s is also called quasi-isolated.)

The following setup will be useful. Let H be an F -stable Levi subgroup of G and
H := HF . Let H0 := [H,H] and H0 := HF

0 , so that H0 is semisimple of simply connected
type, by [39, Prop. 6.20(c) and 12.14]. Then by [20, Cor. 1.5.16], H0 is isomorphic to a

direct product
∏k

i=1 H
Fi
i , where each Hi is simple of simply connected type and Fi is a

Frobenius morphism obtained as some power of F . Write Hi := HFi
i . Let B be a p-block

of H and let B′ be a block of H0 covered by B. Then B′ is isomorphic to a tensor product
⊗ki=1Bi, where Bi is a block of Hi for each 1 ≤ i ≤ k.

Recall from (3.4.1) that E = {SL2(2), SU3(2), Sp4(2)}. Note that Hi is perfect (and
hence quasi-simple) unless Hi ∈ E ∪ {SL2(3)} (see [39, Thm 24.17]). (Indeed, note that
the excluded groups G2(2), 2B2(2), 2G2(3), and 2F4(2) cannot occur as an Hi since F is
a Frobenius endomorphism and G2 does not occur as a component of a Levi subgroup
of the other types.) Since G is defined in characteristic distinct from p and |SL2(3)| is
only divisible by the primes 2 and 3, we further will not need to consider SL2(3) in what
follows. In the following, we will write

k̄Aut(Hi)(Bi) :=

{
kAut(Hi)(Bi) if Hi 6∈ E,

|cd(Bi)| if Hi ∈ E.

Hypothesis 3.8. Keep the notation and situation of the previous paragraph. For a positive
integer c, let B be a p-block of H such that there exists a block B′ as above that satisfies
at least one of the following three conditions:

(3.8.1) there exists some i with 1 ≤ i ≤ k such that k̄Aut(Hi)(Bi) ≥ c;
(3.8.2) there exist i, j with 1 ≤ i 6= j ≤ k such that k̄Aut(Hi)(Bi) ≥ c−1 and, furthermore,

k̄Aut(Hj)(Bj) ≥ 2;
(3.8.3) B′ is cyclic of positive defect, and there exists some i with 1 ≤ i ≤ k such that

Bi is cyclic and k̄Aut(Hi)(Bi) ≥ c− 1.



BRAUER’S HEIGHT ZERO CONJECTURE 13

Proposition 3.9. Let G := GF be as above. Let H be an F -stable, proper Levi subgroup
of G and H := HF . Let p be an odd prime not dividing q and B be a non-cyclic p-block
of H with |cd(B)| > 1. Then:

(a) In the notation above, any block B′ of H0 covered by B has positive defect.
(b) If B satisfies Hypothesis 3.8 for some positive integer c then kAut(H)(B) ≥ c.

Proof. Keep the notation above and let B′ be a block of H0 covered by B. First, assume
B′ is defect zero. Write Irr(B′) = {θ1} and let T := Hθ1 be the inertia subgroup for θ1

in H. Since H/H0 is abelian and restrictions from H to H0 are multiplicity-free (a result
of Lusztig, see [12, Thm 15.11]), Gallagher’s theorem and Clifford correspondence imply

that every element of Irr(H | θ1) is of the form (βθ̂1)H where θ̂1 is an extension of θ1 to T
and β is a (linear) character of T/H0. In particular, every member of Irr(B) is of this
form, and hence |cd(B)| = 1, a contradiction. This shows (a).

We now assume that B satisfies Hypothesis 3.8 for c and aim to show

kAut(H)(B) ≥ c.

Note that this is trivial when c = 1, so we assume throughout that c ≥ 2. We claim that
it suffices to show that

(3.9.1) kAut(H0)(B
′) ≥ c.

Indeed, if this is the case, write θ1, . . . , θc for representatives in Irr(B′) of c distinct orbits.
Then by [44, Thm 9.4], there must be at least c characters χ1, . . . , χc in B, lying above
θ1, . . . , θc, respectively. Now H0 is characteristic in H (indeed, it is generated by all
unipotent elements of H by [20, Rem. 1.5.13], as H0 is simply connected since H is a Levi
subgroup of the simply connected group G), so is stabilised by any automorphism of H.
Then, if χi and χj are Aut(H)-conjugate for i 6= j, then θi and θj are Aut(H)-conjugate
and hence Aut(H0)-conjugate, a contradiction. Hence, we will prove show, at least in the
cases (3.8.1) and (3.8.2), that (3.9.1) holds.

Now, in the case of (3.8.1), we may without loss assume k̄Aut(H1)(B1) ≥ c. Let χ1, χ2 ∈
Irr(B1) lie in distinct Aut(H1)-orbits on Irr(B1) if Hi 6∈ E or have distinct degrees if
Hi ∈ E. First assume that H1 is not isomorphic to any Hi for 2 ≤ i ≤ k. Let X :=
H2 × · · · × Hk and let α ∈ Aut(H0). By [1], for (h, 1X) ∈ H1 × X with h ∈ H1 we
have α(h, 1X) = (α1(h), α′1(h)) where α1 ∈ Aut(H1) and α′1 ∈ Hom(H1,Z(X)) are defined
by α. Now, assume (χ1 ⊗ ϕ)α = χ2 ⊗ ϕ, where ϕ ∈ Irr(B2 ⊗ · · · ⊗Bk). Then considering
elements of the form (h, 1X) with h ∈ H1, we see that χα1

1 (h)θ(h) = χ2(h) for some linear
character θ ∈ Irr(H1). (Namely, θ is the composition of α′1 with the unique irreducible
constituent of ϕ|Z(X).) If H1 6∈ E, this contradicts that χ1 and χ2 are not conjugate under
Aut(H1), since θ must be trivial. If H1 ∈ E, it contradicts that χ1(1) 6= χ2(1). Hence in
either case χ1 ⊗ ϕ cannot be Aut(H0)-conjugate to χ2 ⊗ ϕ. This shows kAut(H0)(B

′) ≥ c.
In the case that H0 contains multiple isomorphic copies of H1, a similar argument holds,
taking instead X to be the (possibly trivial) product of those Hi such that Bi 6∼= B1 under
this isomorphism and χ1 ⊗ · · · ⊗ χ1 (one for each copy of B1) in place of χ1.

Arguing similarly, in case (3.8.2), we obtain kAut(H0)(B
′) ≥ c, and in case (3.8.3) we

obtain kAut(H0)(B
′) ≥ c− 1.

Now, assume we are in the situation of (3.8.3), so B′ is cyclic but B is not, and B′

has positive defect. Then p divides |H/H0|, and we let H0 ≤ Hp ≤ H be such that
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Hp/H0 ∈ Sylp(H/H0). Let Bp be the (unique) block of Hp above B′. Then we have c− 1
non-Aut(H)-conjugate characters in Bp lying above the non-Aut(H0)-conjugate characters
θ1, . . . , θc−1 of Irr(B′). We claim that there is at least one more character in Irr(Bp) that
is not Aut(H)-conjugate to these.

Let (H∗, F ) be dual to (H, F ) and write H∗ := H∗F . Let s ∈ H∗ be a semisimple
p′-element such that Irr(B) ⊆ Ep(H, s). Let H0 ↪→ H be the inclusion map and let s0 be
the image of s under the induced dual epimorphism H∗ � H∗0. Then Irr(B′) ⊆ Ep(H0, s0).
Then at least one of these c − 1 characters, say θ1, can be assumed to lie in E(H0, s0)
using [12, Thm 9.12].

Let ι : H ↪→ H̃ be a regular embedding, as in [12, (15.1)] and write H̃ := H̃F . Note that

ι|H0 is also a regular embedding of H0 into H̃ and we have H0 = [H̃, H̃] and H0CHC H̃.

Let s̃ ∈ H̃∗ be a semisimple p′-element such that ι∗(s̃) = s. Then by [12, Prop. 15.6],

E(H, s) is the set of constituents of the restrictions to H of characters in E(H̃, s̃) and we
may further define E(Hp, s) to be the set of constituents of restrictions of characters from

E(H, s) to Hp. Similarly, for x̃ any semisimple element of H̃∗ and x = ι∗(x̃), we define

E(Hp, x) to be the set of constituents of restrictions of characters from E(H̃, x̃) to Hp.
Then by [11, Prop. 1.3], θ1 extends to a character χ in E(Hp, s), which is hence a

member of Irr(Bp) ∩ E(Hp, s). Then χβ ∈ Irr(Bp) for every β ∈ Irr(Hp/H0). Now, recall

that characters of H̃/H0 are in bijection with elements of Z(H̃∗) (see [12, (15.2)]). We

write ˆ̃z for the character of H̃/H0 corresponding to z̃ ∈ Z(H̃∗). Choose β := ˆ̃z for

1 6= z̃ ∈ Z(H̃∗) of p-power order. Then χβ ∈ E(Hp, sz) where z := ι∗(z̃) and is not

H̃-conjugate to χ by definition of E(Hp, sz) and E(Hp, s). Together with the fact that
sz cannot be H∗-conjugate to ϕ∗(s) for any automorphism ϕ∗ since s is p′ and z is a
p-element, this tells us that χ cannot be Aut(H)-conjugate to χβ (see [48, Cor. 2.4]).

Further, since χβ lies above θ1, it is not Aut(H)-conjugate to a character above θi for
i 6= 1. Then letting χc ∈ Irr(B) above χβ and χ1, . . . , χc−1 ∈ Irr(B) above χ, θ2, . . . , θc−1,
respectively, χ1, . . . , χc are non-Aut(H)-conjugate members of Irr(B), as desired. �

Remark 3.10. In our application of Proposition 3.9 and Lemma 3.12 below, we really
only require kAut(G)H (B) ≥ c, rather than kAut(H)(B) ≥ c. Then we remark that since
the automorphisms of G respect the product structure of H0, we could replace each
k̄Aut(Hi)(Bi) with kAut(Hi)(Bi) in Hypothesis 3.8, and then the statements of Proposition
3.9 and Lemma 3.12 hold with the condition kAut(H)(B) ≥ c replaced with kAut(G)H (B) ≥ c.

In the notation above, note that if B is quasi-isolated, then so is each Bi. Indeed,
let (H∗, F ) be dual to (H, F ) and write H∗ := H∗F . Let Irr(B) ⊆ Ep(H, s) for a quasi-
isolated semisimple p′-element s ∈ H∗. Let H0 = [H,H], and keep the rest of the notation
from the paragraph before Hypothesis 3.8. Note that the inclusion map H0 ↪→ H is a
central isotypy in the sense of [3, Def. 2.A] and [20, 1.3.21], and so is the induced dual
epimorphism H∗ � H∗0, by [20, 1.7.11]. Then if s0 ∈ H∗0 is the image of s under the
latter map, [3, Prop. 2.3] yields that s0 is also quasi-isolated. In particular, any block B′

of H0 covered by B is quasi-isolated, and hence so are the blocks B1, . . . , Bk. (Indeed, if
s0 is quasi-isolated, let s0 correspond to

∏
si under the isomorphism with

∏
HFi
i . If si is

not quasi-isolated in Hi then neither is its preimage in the corresponding F -simple factor
of H0, in the notation of [20, 1.5.14]. But this would contradict that s0 is quasi-isolated.)
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Remark 3.11. With this and Proposition 3.9, note that if each (quasi-isolated) Bi satisfies

(3.11.1) k̄Aut(Hi)(Bi) ≥

{
c if Bi is non-cyclic,

c− 1 if Bi is cyclic,

then our (quasi-isolated) block B will satisfy kAut(H)(B) ≥ c.

Throughout, when L is an F -stable Levi subgroup of H, we use RH
L to denote Lusztig’s

twisted induction with respect to any parabolic subgroup P of H containing L as a Levi
complement. In our situation, since we may exclude groups considered in Proposition 3.2
and E7(2) and E8(2) since they have trivial outer automorphism group, we have twisted
induction is independent of the choice of P by [20, Thm 3.3.8]. Hence, as is customary,
we will suppress the parabolic subgroup from the notation.

Lemma 3.12. As above, let G := GF and let p - q be an odd prime. Assume that
kAut(H)(B) ≥ c for each F -stable Levi subgroup H of G and each non-cyclic quasi-isolated
p-block B of HF with |cd(B)| > 1. Then kAut(G)(b) ≥ c for each non-cyclic p-block b of G
such that |cd(b)| > 1.

Proof. Let b be a non-cyclic block of G such that |cd(b)| > 1. If b is quasi-isolated, our
assumption yields that the statement holds for b, with H = G. Otherwise, by [5], b is
Morita equivalent to a quasi-isolated block of a proper Levi subgroup H := HF of G. In
particular, this Bonnafé–Rouquier Morita equivalence is induced by the map RG

H. Let B
be the Bonnafé–Rouquier correspondent for b in H. Note that by [27, Thm 1.3], B is
non-cyclic if and only if b is. Further, by the character formula [12, Thm 8.16] for RG

H,
we have |cd(B)| > 1 if and only if |cd(b)| > 1.

Now, by the proof of [38, Lemma 3.5], we have Aut(G)b = Inn(G)Aut(G)H,B, and RG
H is

Aut(G)H,B-equivariant. By assumption, kAut(H)(B), and hence kAut(G)H,B(B), is at least c.
Then we have kAut(G)H,B(b) ≥ c, proving that also kAut(G)(b) ≥ c. �

3.3. e-Harish-Chandra theory and blocks. In this subsection, we allow G to be any
Levi subgroup of a simple algebraic group of simply connected type and F : G → G a
Frobenius endomorphism with respect to an Fq-rational structure. Thanks to the work
of Broué–Malle–Michel [8], Cabanes–Enguehard [11], and Kessar–Malle [28], we have a
parametrisation of blocks of G := GF in terms of e-Harish-Chandra theory. (See, e.g.,
[20, §3.5] for the notions of e-torus, e-split Levi subgroups and e-cuspidal characters of
(G, F ).)

Namely, by [28, Thm A], if p ≥ 3 is a prime not dividing q and e is the order of q
modulo p, then there is a bijection from the set of G-conjugacy classes of e-Jordan quasi-
central cuspidal pairs (L, λ) of G with λ ∈ E(LF , p′) to the set of p-blocks of G. (See [28,
Def. 2.1, 2.12] for the definitions.) We will write bG(L, λ) for the block corresponding to
(L, λ). Then all irreducible constituents of RG

L (λ) lie in bG(L, λ) by [28, Thm A]. The next
lemma allows us to say more about characters lying in bG(L, λ) and could be useful for
other applications. Here we write d1 for the map on class functions given by composition
with the characteristic function on p′-elements of a group.

Lemma 3.13. Let b = bG(L, λ) be a p-block of G = GF in Ep(G, s), for s ∈ L∗F a
semisimple p′-element. Let t ∈ Z(L∗)F be a p-element. Then Irr(b) ∩ E(G, st) 6= ∅.
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Proof. By what we recalled above, all constituents of RG
L (λ) lie in Irr(b), so 0 6= d1(RG

L (λ))
has some non-zero constituent in b. Let t̂ denote the linear character of LF corresponding
to t ∈ Z(L∗)F (see [20, Prop. 2.5.20]). Since d1 commutes with Lusztig induction [20,
Prop. 3.3.17] and |t̂| = |t| is a p-power,

d1(RG
L (t̂λ)) = RG

L (d1(t̂λ)) = RG
L (d1(λ)) = d1(RG

L (λ)) 6= 0,

so d1(RG
L (t̂λ)) has a component in b as well, which means that RG

L (t̂λ) has a constituent
lying in Irr(b). But all constituents of RG

L (t̂λ) are contained in E(GF , st) (see [20,
Prop. 3.3.20]). �

For G a connected reductive group such that [G,G] is simply connected, we say that a
block of G = GF is of quasi-central defect if it covers a block of [G,G]F that has a defect
group contained in Z([G,G]F ). (In particular, when G is simple, being of quasi-central
defect is equivalent to having central defect.)

Corollary 3.14. Let G = GF be as above and let b be a block in Ep(G, s) with non-trivial
defect. Then Irr(b) contains at least two characters not conjugate under Aut(G), where
one of the characters lies in E(G, s) and the other one outside of E(G, p′).

Proof. First, by the result of Hiss [12, Thm 9.12] we have Irr(b)∩E(G, s) 6= ∅. Now write
b = bG(L, λ) with L ≤ G an e-split Levi subgroup whose dual L∗ ≤ G∗ contains s. If
L is proper in G, it centralises a non-trivial e-torus of G and thus its dual centralises
a non-trivial e-torus of G∗. Thus there is a p-element 1 6= t ∈ Z(L∗)F ≤ CG∗(s), and
Irr(b) ∩ E(G, st) 6= ∅ by Lemma 3.13. If L = G, the quasi-central defect group D
of b is normal in G, hence there exist characters in b non-trivial on D (see e.g. [44,
Thm 9.4]) which again cannot lie in E(G, p′) (see e.g. [11, Prop. 1.2(v)]). Arguing as
before, characters in E(G, p′) and E(G, st) cannot be Aut(G)-conjugate. �

Note that in the context of Theorem 3.1, we are interested in the case c = 3 of Hypoth-
esis 3.8, and hence Corollary 3.14 implies that we now only need to deal with non-cyclic
blocks.

The next observation deals with unipotent blocks, and may be of interest for other
applications. For this statement, we relax the assumption that p is odd, and if p = 2 we
define e to be the order of q modulo 4. We remark that for ε ∈ {±1}, we write Ln(εq) for
the group Ln(q) when ε = +1 and Un(q) when ε = −1, with analogous conventions for
related groups SLn(εq), PGLn(εq), and GLn(εq).

Lemma 3.15. Let G be a connected reductive group in characteristic r such that [G,G]
is simply connected, and let F : G→ G be a Frobenius endomorphism. Let p be a prime
and let b be a unipotent p-block of G := GF that is not of quasi-central defect. Then Irr(b)
contains two unipotent characters whose degrees have different r-parts. In particular,
these cannot be Aut(G)-conjugate.

Proof. We first assume that G = [G,G] is simple of simply connected type. Suppose G
is of exceptional type. Let e be as defined above and let b = bG(L, λ) for some unipotent
quasi-central e-cuspidal pair (L, λ) (see [28, Thm A]). Note that our assumption b has
non-central defect groups and G is simple means we have G 6= L := LF . Then [14,
Sec. 13.9] and [8, Tab. 1 and 2] include the decomposition of RG

L (λ) and the relative
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Weyl group WG(L, λ) for many of the relevant blocks and [8, Tab. 3] includes information
about remaining cases where L is a torus and WG(L, λ) is non-cyclic. By studying the
characters in these decompositions, whose degrees are available in [14, Sec. 13.9], and at
times applying Ennola duality (see [8, Thm 3.3]), we see there are at least two characters
in RG

L (λ) whose degrees have distinct r-parts, except possibly when L is a torus. In the
latter situation, we have L is the centraliser of a Sylow e-torus, e is regular for G, and
λ = 1. Then b is the principal block of G and is the unique block containing p′-degree
unipotent characters. Hence b contains at least 1G and StG, and the claim holds.

Now suppose G is of classical type. Note that by [10, Thm (i)], we may replace G with
a group of the same rational type. If p = 2, we are done taking 1G and StG, since there
is a unique unipotent block in this case (see [12, Thm 21.14]). So, we also assume p ≥ 3.

First, let G = SLn(εq). Let e′ be the order of εq modulo p. The unipotent blocks of G
are parametrised by e′-cores of partitions of n. Assume b is labelled by the e′-core λ, with
n = e′w + |λ|. As b has non-central defect, w ≥ 1. Let µ1 = (λ1 + e′w, λ2, . . . , λk) and
µ2 = (λ1, . . . , λk, 1

e′w), two partitions of n labelling distinct unipotent characters χ1, χ2

in b. Then the degree formulas [20, Props. 4.3.1 and 4.3.5] show that χ1(1) and χ2(1)
have distinct r-part.

Now letG be one of Sp2n(q), SO2n+1(q), or SOε
2n(q) and let e′ be the order of q2 modulo p.

Now the unipotent blocks of G (or in the case G = SOε
2n(q), the blocks of GOε

2n(q) lying
above unipotent blocks of G) are parametrised by e′-cores (if p | (qe

′ − 1)) or cocores (if
p | (qe

′
+ 1)) of appropriate symbols (see [8, pp. 48–52] and [10, Thm]). Suppose b (or

a block above in GOε
2n(q)) is labelled by the e′-core (X;Y ), with n = e′w + rnk(X;Y ).

(Here rnk(X;Y ) is the rank of the symbol, defined in [20, p. 301].) Let X = (x1, . . . , xa)
and Y = (y1, . . . , yc) with xi < xi+1 and yi < yi+1 for each i. Again we have w ≥ 1, and
we may consider the two unipotent characters in Irr(b) labelled by

(0, 1, 2, . . . , e′w − 1, x1 + e′w, x2 + e′w, . . . , xa + e′w;
1, 2, . . . , e′w, y1 + e′w, y2 + e′w, . . . , yc + e′w)

and
(x1, . . . , xa−1, xa + e′w;Y ).

Here the degree formula [20, Prop. 4.4.7] shows that these two characters will have distinct
r-part.

If b is instead labelled by an e′-cocore, Olsson’s process of e′-twisting of symbols ([50,
p. 235]) shows there is a bijection between symbols (X ′;Y ′) with e′-core (X;Y ) and

symbols (X̃ ′; Ỹ ′) with e′-cocore (X̃; Ỹ ), where (X̃; Ỹ ) is the e′-twist of (X;Y ). Further,

e′-twisting does not change the entries of the symbol, i.e., (X ′;Y ′) and its e′-twist (X̃ ′; Ỹ ′)

satisfy X ′∪Y ′ = X̃ ′∪ Ỹ ′. Hence from the formula [20, Prop. 4.4.7], we see that the r-part

of the characters corresponding to the symbols (X ′;Y ′) and (X̃ ′; Ỹ ′) are the same, and
we are done with the case G = [G,G] is simple.

In the general case, we have b lies above a block B of [G,G]F whose defect groups are
non-central. We may write [G,G]F as a direct product of groups of the form Gi = GFi

i ,
where Gi is simple of simply connected type and Fi is some power of F . Then B is a tensor
product of blocks Bi of Gi, at least one of which, say Bj, must have non-central defect
groups. Then from above, Irr(Bj) contains at least two unipotent characters with different
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r-parts, and therefore the statement also holds for B. Since the unipotent characters in b
are extensions of those in B, this completes the proof. �

3.4. Type A. We begin by considering the case of finite linear and unitary groups. In

this subsection, we fix S̄ = Ln(εq), G = SLn(εq), G∗ = PGLn(εq), and G̃ = GLn(εq) ∼= G̃∗.

The blocks of G̃ have been well-studied, with the parametrisation of the blocks of G̃
given in [18] and a reduction to smaller-rank linear and unitary groups given in [40]. We
use these to prove that Theorem 3.1 holds in the case that S̄ = S/Z(S) = Ln(εq) and
that Hypothesis 3.8 holds for c = 3 and blocks of G. Again in this case, we will provide
a slightly more general result.

Proposition 3.16. Let G = SLn(εq) such that Ln(εq) is simple, and let p be an odd prime
with p - q.
(a) Let B be a p-block of G with non-cyclic defect. Then kAut(G)(B) ≥ 3.
(b) Theorem 3.1 holds when S/Z(S) = Ln(εq).

Proof. Keep the notation from above. Note that in this case, G̃∗ ∼= G̃ = GLn(εq) and

G∗ = PGLn(εq) ∼= G̃/Z(G̃) and recall from the discussion in Section 3.2 that G̃ o D
induces all automorphisms on Ln(εq). From Section 3.1, we may assume that G is the
(non-exceptional) Schur covering group for Ln(εq). Let e′ be the order of εq modulo p.

Note that in the situation of (b), we have S ∼= G/Z where Z ≤ Z(G) is some central
subgroup. Further, writing Zp for the Sylow p-subgroup of Z, we may identify the blocks
of G/Z with blocks of G/Zp, using [44, Thm 9.9]. Hence we may assume Z = Zp is a
p-subgroup in Z(G). Then it suffices to show (b) in the case that e′ = 1 with S = G/Zp
a quotient by some non-trivial central p-group and to show (a).

Let B be a non-cyclic block of G and suppose s is a semisimple p′-element of G∗ such
that B lies in Ep(G, s). In the context of (b), we further assume here that B̄ is a block of
G/Zp with non-cyclic defect groups dominated by B, so that Irr(B̄) is comprised of those
members of Irr(B) that are trivial on Zp.

Applying Corollary 3.14, it suffices for (a) to show that there are at least two non-
Aut(G)-conjugate members of Irr(B) ∩ E(G, s) or two non-Aut(G)-conjugate members
of Irr(B) outside of E(G, p′). For (b), note that every member of E(G, s) lies above the
same character ωs of Z(G), by [4, 11.1(d)], and that ωs must be trivial on Zp (and in
fact on Z(G)p ∈ Sylp(Z(G))) since s is a p′-element. In particular, every member of

Irr(B)∩E(G, s) may be viewed as a character of B̄. Hence for (b), it suffices to show that
there are at least two non-Aut(G)-conjugate members of Irr(B) ∩ E(G, s), or that there
are at least two non-Aut(G)-conjugate members of Irr(B) lying outside of E(G, p′) and
trivial on Z(G)p.

Let s̃ ∈ G̃∗ ∼= G̃ be a semisimple p′-element mapping to s under the natural epimorphism

G̃∗ � G∗, and let B̃ be a block of G̃ in Ep(G̃, s̃) covering B. (Indeed, such a setup exists

using [12, Thm 9.12 and Prop. 15.6].) Let D̃ and D be defect groups of B̃ and B,

respectively, satisfying D = D̃ ∩G. Now,

CG̃∗(s̃)
∼=

k∏
i=1

GLmi((εq)
δi),
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where δi and mi are positive integers. (See [18, Sec. 1] for details.) Note that q− ε divides
(εq)δi − 1 for each i. Write Gi := GLmi((εq)

δi) for 1 ≤ i ≤ k.
According to [18, Thm (7A)], Jordan decomposition maps

Irr(B̃) ∩ E(G̃, s̃)

to
Irr(B′) ∩ E(CG̃∗(s̃), 1),

where B′ =
∏k

i=1Bi is some unipotent block of CG̃∗(s̃) with Bi a unipotent block of Gi.

Let ei be the order of (εq)δi modulo p. Then B̃ (and B′) is determined by certain ei-core
partitions λi. Namely, writing mi := eiwi + |λi| for each 1 ≤ i ≤ k, [40, Thm (1.9)] yields

that the number of characters in Irr(B̃) and the defect group of B̃ are the same as for the

principal block of
∏k

i=1 GLeiwi((εq)
δi).

In particular, note that if some Bi has non-central defect, then Bi, and hence B′,
contains at least two unipotent characters of distinct degree, by Lemma 3.15. In this

case, Irr(B̃) ∩ E(G̃, s̃) contains at least two characters of distinct degree, which must lie
above two characters in Irr(B) ∩ E(G, s) lying in distinct Aut(G)-orbits.

To complete the proof of (a) and (b) it therefore suffices to assume that each Bi has
central defect, which forces mi = eiwi = 1 for each 1 ≤ i ≤ l, where we without loss
assume that Bi has trivial defect groups for l < i ≤ k. Here note that Gi

∼= C(εq)δi−1

is cyclic for 1 ≤ i ≤ l and a defect group for B̃ is isomorphic to a Sylow p-subgroup of∏l
i=1 C(εq)δi−1. Since B̃ is non-cyclic, note that l ≥ 2.

Suppose χi ∈ Irr(B) lies under members of E(G̃, s̃t̃i), i = 1, 2, for p-elements t̃i ∈
CG̃∗(s̃), and assume χ1 is Aut(G)-conjugate to χ2. Then (s̃t̃1)α is G̃∗-conjugate to s̃t̃2z

for some z ∈ Z(G̃∗) and α ∈ D. It follows that t̃α1 is conjugate to t̃2zp, and hence they
share the same set of eigenvalues, where zp is the p-part of z. To complete the proof of (a),

we therefore aim to exhibit t̃1 and t̃2 such that this cannot be the case.
When l ≥ 3, elements of G̃∗ corresponding to (x, 1, . . . , 1) and (x, y, 1, . . . , 1) for p-

elements 1 6= x ∈ G1, 1 6= y ∈ G2 have different multiplicities for the eigenvalue 1, and

hence we obtain t̃1, t̃2 satisfying t̃α1 is not G̃∗-conjugate to t̃2z for any z ∈ Z(G̃∗) and
α ∈ D.

Now suppose l = 2. If p - (q − ε), then p-elements corresponding to (x, 1), (x, y) with

1 6= x ∈ G1, 1 6= y ∈ G2 again satisfy the claim, since p - |Z(G̃∗)|. Hence we assume that
p | (q − ε). Note that this forces p | ((εq)δi − 1) for each i = 1, 2.

If p2 | ((εq)δ1 − 1), say, then elements t̃1, t̃2 corresponding to (x, 1) and (xp, 1) with
|x| = p2 have the desired property. We therefore can assume that p || ((εq)δ1 − 1), so that

also p || (q − ε), in which case D = D̃ ∩G is cyclic, and we are done with (a).
To complete the proof of (b), we wish to show that such t̃1 and t̃2 exist such that ωt̃i

are further trivial on Z(G̃)p. For this, it suffices to find t̃1 and t̃2 lying in [G̃∗, G̃∗] ∼= G.

Recall that here p | gcd(n, q − ε). In this case, note that ei = 1 for 1 ≤ i ≤ k since
(q − ε) | ((εq)δi − 1), so that Bi is the unique block in E(Gi, 1) for each 1 ≤ i ≤ k, and

hence B̃ is the unique block in Ep(G̃, s̃). This also forces l = k, and E(G̃, s̃) contains only
one character.
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Recall that D̃ is isomorphic to a Sylow p-subgroup of the (in this case abelian) group

CG̃∗(s̃) and in fact by [18, Thm (3C)], if we identify G̃ with G̃∗, we may take D̃ to

be a Sylow p-subgroup of CG̃∗(s̃). This way, we also identify G with [G̃∗, G̃∗] and have

D = D̃ ∩ G is viewed as a subgroup of CG̃∗(s̃) ∩ [G̃∗, G̃∗]. Let D̄ = D/Zp be a defect
group for B̄. It suffices to argue that D/Z(G)p contains at least two non-trivial non-

Aut(G)-conjugate elements when |cd(B)| > 1. (Indeed, this would yield p-elements of

CG̃∗(s̃) that lie in G ∼= [G̃∗, G̃∗] and are not Aut(G)-conjugate to Z(G̃∗)p-multiples of

one another.) Hence we may assume D/Z(G)p is elementary abelian, as otherwise two

non-identity elements of D/Z(G)p with distinct orders satisfy the claim.

If k ≥ 4, then D/Z(G)p is generated by at least two elements, and as before we may find

such elements whose eigenvalue structures do not allow them to be Aut(G)-conjugate.
If k = 2 and δ1 = δ2, then this forces p | δ1, since p | n = 2cδ1 for some positive integer c.

Further, note that since D is not cyclic, we know ((εq)δ1 − 1)p > (q − ε)p. Then choosing

the embeddings into G̃ of elements of the form (y, y−1) with |y| = ((εq)δ1 − 1)p and (x, 1)

with |x| = (q − ε)p, we see these elements lie in G (since (x, 1) is embedded into G̃ with
eigenvalues

(x, xεq, . . . , x(εq)δ1−1

, 1, . . . , 1) = (x, . . . , x, 1, . . . , 1),

and therefore has determinant 1) and cannot be Aut(G)-conjugate to Z(G)p-multiples of
one another. Hence we may assume that δ1 > δ2. Then note that, again studying the

embedding of elements (s1, s2) ∈ C(εq)δ1−1 × C(εq)δ2−1 into G̃∗, we see that s̃ cannot be

G̃∗-conjugate to s̃z for any 1 6= z ∈ Z(G̃∗). Hence the unique character of E(G̃, s̃) restricts

irreducibly to G, and similarly every member of E(G̃, s̃t̃) for t̃ ∈ CG̃∗(s̃) a p-element also

restricts irreducibly. Since CG̃∗(s̃t̃) = CG̃∗(s̃) for each such t̃, we see every element of

Irr(B̃), and hence of Irr(B), will have the same degree, a contradiction.
So, we finally assume k = 3. Arguing like above, we may assume δ1 = δ2 = δ3, so

CG̃∗(s̃)
∼= G3

1. If p || ((εq)δ1 − 1), then p || (q − ε), so we have Zp = Z(G)p and D̄ is

cyclic, a contradiction. So we see p2 | ((εq)δ1 − 1). But then we also have p2 | |Z(G)p|,
since otherwise D/Z(G)p contains elements of order p2, contradicting our assumption that

D/Z(G)p is elementary abelian. In particular, p2 | n. Then here since n = 2c · 3δ1, we

have p | δ1. Hence we are done by considering elements (y, y−1, 1) and (x, 1, 1) with x, y
analogous to the case k = 2 above. �

3.5. Other classical groups. For (G, F ) a connected reductive group and Frobenius
morphism F emitting an Fq-rational structure and s ∈ G∗ semisimple, we write

JG
s : ZE(GF , s)→ ZE(CG∗(s)

F , 1)

for a Jordan decomposition as in [20, Thm 2.6.22]. Recall from [20, Prop. 3.3.20] that for
K ≤ G an F -stable Levi subgroup with dual K∗ ≤ G∗ and s ∈ K∗, Lusztig induction
induces a map RG

K : ZE(KF , s)→ ZE(GF , s).
We next consider the case of other classical groups, specifically for quasi-isolated blocks.

Proposition 3.17. Let G be simple of simply connected type such that G = GF is quasi-
simple of type Bn(q) with n ≥ 2, Cn(q) with n ≥ 3, Dn(q) with n ≥ 4 or 2Dn(q) with
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n ≥ 4. Let p be an odd prime not dividing q. Then if B is a non-cyclic quasi-isolated
p-block of G, we have kAut(G)(B) ≥ 3.

Proof. As before, let ι : G ↪→ G̃ be a regular embedding, even taking the embedding as in

[20, Ex. 1.7.4], and write G̃ = G̃F . Let B be a non-cyclic quasi-isolated block in Ep(G, s)
and let B̃ ⊆ Ep(G̃, s̃) be a block of G̃ lying above B, where ι∗(s̃) = s is a quasi-isolated
p′-element of G∗. Let e be the order of q modulo p. By what we recalled from [28], let

(L, λ) be the e-Jordan cuspidal pair of G̃ such that B̃ is the unique block of G̃ containing

all constituents of RG̃
L (λ).

Note that we may assume s̃ ∈ L∗ for a dual Levi subgroup L∗ ≤ G̃∗ of L. Then since
F is a Frobenius endomorphism and CG̃∗(s̃) is connected and has only components of
classical type, by [20, Thm 3.3.7] the Mackey formula holds, and by [20, Thm 4.7.2],

(3.17.1) JK
s̃ ◦RK

K1
= R

CK∗ (s̃)
CK∗1

(s̃) ◦ J
K1

s̃ ,

for any F -stable Levi subgroups K∗1 ≤ K∗ ≤ G̃∗ containing s̃, so in particular for K∗1 = L∗.
Also note that CL∗(s̃) is an e-split Levi subgroup of CG̃∗(s̃) (by [24, Prop. 2.12])

and (by definition of e-Jordan cuspidality), (CL∗(s̃), J
L
s̃ (λ)) is an e-cuspidal pair. Write

H∗ := CG̃∗(s̃) and M∗ := CL∗(s̃), a Levi subgroup of H∗, and let H,M ≤ G̃ be dual to
H∗ and M∗, respectively. Then (M, ψ), with ψ := JM∗

1 ◦ JL
s̃ (λ), is an e-Jordan cuspidal

pair for H defining a unipotent block b of H := HF . Then by [8, Thm 3.11] and [28,
Thm A], we have Irr(b) ∩ E(H, 1) is the set of constituents of RH

M(ψ). From this, we see
that Jordan decomposition induces an injection

Irr(b) ∩ E(H, 1) ↪→ Irr(B̃) ∩ E(G̃, s̃).

Let t ∈ CG̃∗(s̃) = (H∗)F be a p-element and let G̃(t) ≤ G̃ and H(t) ≤ H be F -
stable Levi subgroups in duality with CG̃∗(t) and CH∗(t), respectively. Applying [10,

Thm (iii)] to both B̃ and b and applying (3.17.1) to (G̃,G(t), s̃) as well as to its analogue

for (H∗,H(t)∗, 1), we obtain further that Irr(B̃) ∩ E(G̃, s̃t) is non-empty if and only if

Irr(b) ∩ E(H, t) is non-empty. More specifically, χ ∈ E(G̃, s̃t) is in Irr(B̃) if and only if

ψ ∈ E(H, t) lies in Irr(b), where ψ is the character such that JG̃
s̃t (χ) = JH

t (ψ). Further, by

[11, Prop. 5.1], b and B̃ have isomorphic defect groups. Let Db
∼= DB̃ and DB be defect

groups of b, B̃ and B, respectively, chosen so that DB = DB̃ ∩G.
Now, by [3, (2.2)], we have ι∗ (H∗) = CG∗(s)

◦. Since B is quasi-isolated, the latter has
only classical components, of the forms listed in [3, Tab. II]. Hence the components of H
are of the forms dual to these.

By [10, Thm (i)], the unipotent characters in b are independent of isogeny type. Let
H0 := [H,H]F and let b′ be the unipotent block of H0 below b and b′′ the corresponding
unipotent block of [H,H]Fsc, where [H,H]sc denotes the simply connected covering of the
semisimple group [H,H]. Applying Corollary 3.14 and Lemma 3.15, we may assume
Z([H,H]Fsc)p is a defect group of b′′, and each of b, b′ and b′′ contain exactly one unipotent

character. Assume [H,H]Fsc has a factor of type Am(εqδ) for some m, δ ≥ 1 and ε ∈ {±1}
with dp(εq

δ) = 1, where dp(εq
δ) denotes the order of εqδ modulo p. Then, Am(εqδ) has

a unique unipotent p-block, which must contain the trivial and Steinberg characters,
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contradicting that b contains a unique unipotent character. Thus, since all components
of H are classical, Z([H,H]Fsc)p is trivial, so p - |Z(H0)|, and we obtain that Db = Z(H)p
from [10, Thm (ii)]. Then we see using [11, Lemma 4.16, Def. 4.3] that DB̃ can be taken
to be equal to Db = Z(H)p.

Since G̃/GZ(G̃) is a 2-group, we know Z(G̃)p ∩G = 1, so DB̃ is a direct product of DB

and Z(G̃)p, so DB
∼= DB̃/Z(G̃)p and Z(H)p/Z(G̃)p must be non-cyclic. However, from

our list of possible structures in [3, Tab. II], we see that Z(H)p/Z(G̃)p is trivial or cyclic,
unless G is of type Dn and H is of type An−3. In this case, although s is quasi-isolated,

s̃ is not, and H is a Levi subgroup of G̃. From our discussions above and using, for
example, the descriptions of possible (CG∗(s)

◦)F in [36, Table 2], we have H0 = An−3(εq)

with dp(εq) 6= 1, and Z(H)p/Z(G̃)p
∼= C2

(q+ε)p
coming from a torus C2

q+ε ≤ H.

Let θ be the unique unipotent character in b. We have Irr(b) = {θt̂ | t ∈ Z(H∗)Fp },
where t 7→ t̂ is the isomorphism Z(H∗)F → Irr(H/H0) guaranteed by [20, Prop. 2.5.20].

Now, a construction for G̃ ∼= G̃∗ is presented in [20, Ex. 1.7.4] using tori constructed in
[20, Ex. 1.5.6]. The element s and its centralizer in G∗ are described in terms of root
systems in [3]. With this, we can see Z(H∗) through this construction, and we calculate

that there are elements t1, t2 of order p in Z(H∗)F \ Z(G̃∗) such that t1 is not G̃∗D-

conjugate to t2z for any z ∈ Z(G̃∗)p. Since G̃oD induces Aut(G) and [13, Thm 3.1] tells

us Jordan decomposition for G̃ can be chosen to be D-equivariant, we then obtain as in

the proof of Proposition 3.16 two non-Aut(G)-conjugate characters in B̃ \ E(G̃, p′) lying
above non-Aut(G)-conjugate members of Irr(B). �

3.6. Remaining quasi-isolated blocks.

Proposition 3.18. Let G be such that G := GF is quasi-simple of type En(q) with
6 ≤ n ≤ 8, 2E6(q), F4(q) or G2(q). Let p be an odd prime not dividing q. Then if B is a
non-cyclic quasi-isolated p-block of G, we have kAut(G)(B) ≥ 3.

Proof. Let B lie in Ep(G, s), where s is a quasi-isolated semisimple p′-element of G∗. Let
e be the order of q modulo p. In our situation, thanks to [28, Rem. 2.2], the notions of
e-Jordan cuspidality and e-cuspidality coincide. When p is good for G, the e-Jordan quasi-
central cuspidal pairs are the same as the e-Jordan cuspidal pairs by [28, Thm A(d,e)].

Assume (G, χ) is quasi-central e-cuspidal. Then since G = [G,G], [27, Prop. 2.5]
implies that bG(G, χ) is of central defect. However, then bG(G, χ) is cyclic.

Hence from now on, we may assume B = bG(L, λ) with (L, λ) an e-Jordan quasi-
central cuspidal pair of G with G 6= LF and λ ∈ E(LF , s). Further, from Lemma 3.15 and
Corollary 3.14, we may assume B is not unipotent. From here, we consider separately the
cases that p is bad and that p is good.

First let p ≥ 3 be bad for G. Here the block distributions for E(G, s) are given in
[27, Tab. 2–4,6–9], or by Ennola duality with those results. (Namely, when e = 2, one
formally replaces q with −q in the results for e = 1 — see [27, p. 16]; also, the results
for 2E6(q) are obtained from those of E6(q) by switching the roles of e = 1 and e = 2 —
see [27, pp. 21].) From this and the knowledge of the degrees of characters in E(G, s)
for each CG∗(s) listed, (obtained by Jordan decomposition from the unipotent character
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degrees of groups of small rank), we see that B ∩ E(G, s) contains at least two characters
that are not Aut(G)-conjugate in the cases with non-cyclic defect. (Here we may use [27,
Prop. 2.7] to understand the defect groups.) Hence we are done in this case, by applying
Corollary 3.14.

Next assume p ≥ 5 is a good prime for G. First suppose e ≥ 3. In this case, the block
distributions for E(G, s) are given in [24, Tab. 2, 3, 5, 7, 8], through a description of the
decompositions of RG

L (λ). With this information, combined with the knowledge of the
character degrees in CG∗(s) and again using Corollary 3.14 we see there are at least three
non-Aut(G)-conjugate characters when the defect group is non-cyclic.

Finally, if p ≥ 5 is a good prime for G with e ∈ {1, 2}, the decompositions of RG
L (λ)

and the groups WG(L, λ) are the same as those given in [27, Tab. 2–4,6–9] for the bad
prime case. But, note that now each (L, λ) gives a distinct block by [28, Thm A], and
the same considerations as before complete the proof. �

Corollary 3.19. Let G be simple of simply connected type such that G := GF is quasi-
simple. Let p - q be an odd prime and let B be a quasi-isolated p-block of G. Then
kAut(G)(B) ≥ 3 if B is non-cyclic and kAut(G)(B) ≥ 2 if B is cyclic of positive defect.

Proof. This now follows from Corollary 3.14 and Propositions 3.6, 3.16, 3.17, and 3.18. �

Proposition 3.20. Let G be simple of simply connected type such that G := GF is quasi-
simple, and let p - q be an odd prime. Let H be an F -stable Levi subgroup of G and let B
be a non-cyclic quasi-isolated p-block of H := HF with |cd(B)| > 1. Then kAut(H)(B) ≥ 3.

Proof. Using Corollary 3.19 and Proposition 3.5, we have H satisfies Hypothesis 3.8 with
respect to c = 3 (see also Remark 3.11). Hence by Proposition 3.9, the statement holds.

�

3.7. Proof of Theorem B. We are now ready to complete the proof of Theorem B.
Recall that, thanks to Section 3.1 and Proposition 3.7, we only need to consider groups
of Lie type in non-defining characteristic.

Theorem 3.21. Theorem 3.1 holds when S is quasi-simple such that S/Z(S) is a simple
group of Lie type defined in characteristic r 6= p.

Proof. By Section 3.1, we may assume that the simple group S̄ := S/Z(S) has a non-
exceptional Schur multiplier, and that S is not of Suzuki or Ree type.

Let G be the Schur cover of S̄, so that G = GF is the group of fixed points of some
simple, simply connected algebraic group G in characteristic r under some Frobenius
morphism F . Assume first that p - |Z(G)|. Then it suffices to show the statement for G,
since the irreducible characters in a block of S will be the same as those in the block of G
dominating it, viewed via inflation. As in the proof of Lemma 3.12, we have b is Morita
equivalent to a quasi-isolated block B of H, where H = HF for an F -stable Levi subgroup
H of G. Now, by Proposition 3.20 together with Lemma 3.12, we have kAut(G)(b) ≥ 3.

Now suppose that p divides |Z(G)|. Then since p is odd, we have G is SLn(εq) or
E6(εq) for some ε ∈ {±1} and some power q of r. In the first case, p | gcd(n, q − ε) and
Proposition 3.16(b) finishes the proof. In the second case, p = 3 | (q − ε).

So, we finally assume that S̄ = E6(εq) = G/Z(G) and p = 3 | (q − ε). Let b̄ be a
3-block of S̄ with non-cyclic defect groups such that |cd(b̄)| > 1, and let b be the block
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of G dominating b̄ lying in E3(G, s) for some semisimple 3′-element s ∈ G∗. Let H be an
F -stable Levi subgroup of G minimal with the property that CG∗(s) ≤ H∗, so that s is
quasi-isolated in H∗. Let B be the block of H = HF in Bonnafé–Rouquier correspondence
with b and let B̄ be its image in H/Z(G). Then B̄ is also not cyclic, by [27, Thm 7.16].

Arguing exactly as in the fourth paragraph of [29, p. 13], either CG∗(s) = C◦G∗(s) = H∗

consists only of components of type A, or H0 := [H,H] is of type D4 or D5.
In the first case, B is the tensor product of some unipotent block of H with the linear

character ŝ corresponding to s ∈ Z(H∗)F . Let B′ be the unipotent 3-block of H0 covered
by B ⊗ ŝ−1. Using Lemma 3.15 or in fact checking directly for groups of type A of
rank at most 5, we see B′ contains at least two unipotent characters of distinct degree
unless either CG∗(s) is abelian or H0 contains only components of the form A2(−εq). If
CG∗(s) is abelian, then every member of E3(H, s), hence Irr(B), and hence Irr(b), has the
same degree. Now, the unipotent blocks of A2(εq) consist of one defect zero block and
the principal block containing the trivial and Steinberg characters. Then if H0 contains
only components of the form A2(−εq) and B′ does not contain two characters of distinct
degree, then B′ has trivial defect groups, which contradicts Proposition 3.9(a) unless again
|cd(B)| = |cd(b)| = 1.

So we may assume B′ contains at least two unipotent characters of distinct degree, so
Irr(B) ∩ E(H, s), and hence Irr(b) ∩ E(G, s), contains at least two characters of distinct
degrees. Recall that the members of Irr(b)∩E(G, s) are trivial on Z(G), since s is 3′, and
can therefore be viewed as characters in Irr(b̄). Further, the images of the characters in
Irr(B) ∩ E(H, s) under d1 are linearly independent by [11, Thm 1.7]. Hence there must
be at least one more member of Irr(B̄), and therefore at least one member of Irr(b̄) lying
outside of E(G, s), which as before is not Aut(G)-conjugate to the members of E(G, s).

Now consider the case H0 = [H,H] is of type D4 or D5. Note that H0 = HF
0 is simply

connected of type D4 or D5, and hence has centre of 2-power order. Then a (quasi-isolated)
block B′ of H0Z(G)/Z(G) ∼= H0 lying under B̄ contains at least three, respectively two,
characters in distinct Aut(H0)-orbits from Proposition 3.17 and Corollary 3.14 if B′ is
non-cyclic, respectively cyclic. If B′ is non-cyclic, then arguing exactly as in the situation
of Proposition 3.9(a) and Lemma 3.12, but with H0Z(G)/Z(G)CH/Z(G) taking the place
of H0 CH, completes the proof. So, assume B′ is cyclic. Note that H = H0Z

◦(H), and
H0Z

◦(H)F/Z(G) is normal in H/Z(G) with 3′-index, so that a block B′′′ of this group
under B̄ is non-cyclic. Further, this group can be identified with a 3′-quotient of H0 ×
Z◦(H)F/Z(G), and hence we may identify B′′′ with a block B′⊗B′′ of H0×Z◦(H)F/Z(G),
where B′′ has non-trivial defect groups. Then taking two non-Aut(H)-conjugate members
of B′′ (these exist since B′′ is a tensor product of the unique block of the Sylow 3-
subgroup of Z◦(H)F/Z(G) with some character of 3′ order), we obtain kAut(H)(B̄) ≥ 3
and kAut(G)(b̄) ≥ 3, again arguing as in Propositions 3.9 and Lemma 3.12. �

4. Invariant blocks and defect groups

This section is devoted to the proof of the following result on blocks of quasi-simple
groups (which will imply Theorem C):

Theorem 4.1. Let p be an odd prime and S a quasi-simple group with Z = Z(S), S̄ :=
S/Z. Let b be a p-block of S with an abelian, non-cyclic defect group D, and bD a block
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of CS(D) with defect group D inducing b. For parts (a) and (c), in the cases S̄ = E6(εq)
with p = 3|(q − ε) and ε ∈ {±1}, assume in addition that BHZ for the prime p holds for
all groups of order smaller than |S̄|.
(a) Suppose that S̄ ≤ H ≤ Aut(S), A := H/S̄ has a normal p-complement and a cyclic

Sylow p-subgroup Q. Assume b is H-invariant, and for every χ ∈ Irr(b) we have that
|A : Aχ| is p′. If x ∈ NH(D) is a p-element that fixes bD, then [x,D] = 1.

(b) Suppose that S̄ ≤ H ≤ Aut(S) and Op′(H/S̄) = H/S̄. Also assume that every
χ ∈ Irr(b) is H-invariant. Set J := Inndiag(S̄) if S is of Lie type, and J = S̄
otherwise. Then HJ/J is a p′-group.

(c) Suppose p - |Z| and let S/Z ≤ K/Z ≤ Aut(S) with K/S an abelian p-group. If every
irreducible character in b extends to K, then the defect groups of the K-block covering
b are abelian.

4.1. First reductions. We keep the notation of Theorem 4.1 throughout the section. In
particular, p is always an odd prime. For the proof we discuss the various possibilities for
S and p according to the classification of finite simple groups. By assumption |D| > 1
and thus p divides |S|.

Lemma 4.2. In the situation of Theorem 4.1(a) assume Q is normal in A. Then we may
assume A = Q 6= 1.

Proof. If Q is normal in A, all orbits of Q on Irr(b) will have p′-length as well, and all p-
elements in A lie in Q. So we are done if we can show the claim when A = Q. Furthermore,
if Q = 1, any p-element x ∈ NH(D) that fixes bD centralises D by Proposition 2.4. �

Lemma 4.3. In the situation of Theorem 4.1(c) assume K/S is cyclic. Then the claim
in 4.1(c) is a consequence of 4.1(a).

Proof. Since every irreducible character in b extends to K, the block b is K-invariant. Let
B be the unique block of K covering b. By Lemma 2.3, let D̂ be a defect group of B such
that D̂ ∩ S = D and D̂ ≤ T , where T is the stabiliser of bD in NK(D). Let x ∈ D̂ then

[x,D] = 1 by (a), therefore D ≤ Z(D̂). As D̂/D is cyclic, this shows D̂ is abelian. �

Proposition 4.4. For the proof of Theorem 4.1 we may assume that S/Z(S) is simple of
Lie type in characteristic different from p.

Proof. If S̄ is an alternating group, a sporadic group, or the Tits simple group, then
|Out(S)| is a 2-power. Hence 4.1(a) follows from Proposition 2.4 (applied to G = N = S),
while 4.1(b), (c) hold trivially. The same arguments apply whenever p - |Out(S̄)|.

Now assume S̄ is simple of Lie type in characteristic p > 2. If S̄ has an exceptional
covering group (see [39, Tab. 24.3]) then Out(S) is a 2-group, and we can conclude as
above. Hence we may assume |Z| is prime to p and p divides |Out(S)|. By [25] any p-block
of S has either full defect or defect zero. Thus our assumption on D being abelian forces
S̄ = L2(q) for some q = pf , so we may take S = SL2(q). This group has two p-blocks of
maximal defect, the principal block B0(S) and a block B containing all faithful characters
(see [25]). Since |Out(S)| is divisible by p, Q must induce field automorphisms of order p,
so p|f . By order reasons, the image of Q is central in Out(S), so by Lemma 4.2 we
may assume A = Q. Now by inspection of the generic character table given e.g. in [20,
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Ex. 2.1.17 and Tab. 2.6] there exist irreducible characters in B0(S) as well as in B not
stabilised by Q. Hence the theorem holds in this case. �

Proposition 4.5. Theorem 4.1 holds for S an exceptional covering group of a simple
group of Lie type in characteristic different from p.

Proof. The simple groups with exceptional covering groups are listed in [39, Tab. 24.3].
Arguing as in the proof of Proposition 4.4, we need only consider the ones with Out(S)
not a p′-group, which are L3(4), U6(2), O+

8 (2), 2B2(8) and 2E6(2), and the only relevant
prime is p = 3. Assume S̄ = U6(2) or 2E6(2) and that 3 divides |H/S̄|, respectively
|K/S|. Since any outer automorphism of order 3 permutes the three involutions in the
Schur multiplier of S̄ cyclically and the block b is invariant under H, respectively K, the
relevant covering groups are S = S̄ and S = 3.S̄ only, which are not exceptional coverings.
In all other cases, using [19], the 3-blocks of an exceptional covering group S turn out to
have either cyclic or non-abelian defect, whence the claim follows. �

Proposition 4.6. Theorem 4.1 holds for S a Suzuki or Ree group.

Proof. By Proposition 4.4, we may assume p is not the defining characteristic of S and
S 6∼= 2F4(2)′. Now the Sylow p-subgroups of the Suzuki and the small Ree groups are cyclic
for any such p ≥ 3. For S = 2F4(q2) with q2 > 2, the only p-block with non-cyclic defect
groups is the principal block b = B0(S), and its defect groups are abelian when p > 3 (see
[35]). Now Out(S) is cyclic, so in particular its Sylow p-subgroup is normal; also J = S̄.
By Lemma 4.2 we may assume A = Q, and by Lemma 4.3 it suffices to show 4.1(a) and
4.1(b). But then the only p-block of H above b is the principal block B = B0(H). By [35,
Bem. 3] all characters in b have height 0, and if all orbits of Q on Irr(b) have p′-size, the
same is true for the characters in Irr(B). But then by the main result of [37], the Sylow
p-subgroups of H are abelian. Alternatively, by inspection of the character table [35], the
assumption of 4.1(a) is in fact never satisfied for A 6= 1; and this establishes 4.1(a), as
well as 4.1(b). �

4.2. Some results on p-blocks. To deal with groups of Lie type for non-defining primes
we first observe some general facts on blocks of finite reductive groups that may be of
independent interest.

Let G be a Levi subgroup of a simple linear algebraic group of simply connected type
over an algebraically closed field of positive characteristic and F : G → G a Frobenius
endomorphism with respect to an Fq-rational structure. Let G∗ be a group in duality
with G with corresponding Frobenius endomorphism again denoted F . We let p ≥ 3 be
a prime not dividing q and denote by e the order of q modulo p.

Recall that any p-block b of G := GF has the property that Irr(b) ⊆ Ep(G, s) for some
semisimple p′-element s ∈ G∗ := G∗F (see e.g. [12, Thm 9.12]). Furthermore, by [28,
Thm A] there is a bijection between p-blocks b of GF and GF -classes of e-Jordan-cuspidal
pairs (L, λ) of G of quasi-central p-defect, with λ lying in a p′-Lusztig series of Irr(LF )
such that all constituents of RG

L (λ) are contained in Irr(b). We write

(L, λ) 7→ bG(L, λ)

for this map.



BRAUER’S HEIGHT ZERO CONJECTURE 27

Lemma 4.7. Let d ≥ 1 and L be a maximal proper d-split Levi subgroup of G. Then
|NG(L)F/LF | is not divisible by a prime bigger than max{2, d}.

Proof. The maximal proper d-split Levi subgroups L of G above the centraliser of a
fixed Sylow d-torus S of G are in one-to-one correspondence with the maximal parabolic
subgroups of the relative Weyl group W = NG(S)F/CG(S)F of S [20, Prop. 3.5.12].
Moreover, if L corresponds to W1 ≤ W then NG(L)F/LF ∼= NW (W1)/W1 (see [39,
Prop. 26.4]). The claim is thus reduced to a question in reflection groups. For these,
there is an immediate reduction to the irreducible case. The latter can be checked case by
case using the explicit description of the various relative Weyl groups given in [20, 3.5.11–
3.5.15]. For example, when G is of classical type, then W = G(m, 1, n) or G(m, 2, n) for
suitable m ∈ {d, 2d} and n ≥ 1, for which the assertion is easily verified. �

The following somewhat surprising result may be of independent interest. Here, by
a field automorphism of G we mean any conjugate of an automorphism induced by a
Frobenius endomorphism F0 of G commuting with F .

Proposition 4.8. Let σ be a field automorphism of G = GF of order p, and let γ = στ ,
where τ is an inner-diagonal automorphism of G. Then any p-block of G of non-quasi-
central defect contains characters in a Lusztig series that is not γ-stable.

Proof. Let b be a p-block of G of non-quasi-central defect. As above, b = bG(L, λ) for some
e-split Levi subgroup L of G, proper since b has non-quasi-central defect. By assumption,
up to conjugation, σ is induced by a Frobenius endomorphism F0 of G commuting with F ,
with respect to an Fq0-rational structure on G where q = qp0. Then q0 also has order e
modulo p. In particular any e-torus of (G, F0) is also an e-torus of (G, F ), and conversely,
any F0-stable e-torus of (G, F ) is also an e-torus of (G, F0). The same relations hold for
e-split Levi subgroups since these are the centralisers of e-tori.

By [57, 5.6], σ induces a field automorphism σ∗ of G∗ = G∗F of the same order. Let
L∗ ≤ G∗ be in duality with L, an e-split Levi subgroup of (G∗, F ) that is F0-stable,
hence e-split in (G∗, F0). Let L∗1 ≥ L∗ be a maximal (proper) e-split Levi subgroup of
(G∗, F0). Thus, T1 := Z(L∗1)Φe is an e-torus of (G∗, F ) and (G∗, F0) of rank 1, and so
TF

1 and TF0
1 have cyclic Sylow p-subgroups [39, Prop. 25.7], with |TF

1 |p > |T
F0
1 |p since

|Φe(q)|p > |Φe(q0)|p. Thus a generator t of (TF
1 )p is not fixed by σ∗, that is, tσ

∗
= ta 6= t

for some integer a.
We claim that CG∗((T

F
1 )p) = CG∗((T1)Φe). Indeed, if p is a good prime for G then this

is [10, Prop. 2.1(ii)+(iii)]. Otherwise, G has a factor of exceptional type and p = 3 (so
e = 1, 2) or G = E8, p = 5 and e = 1, 2, 4. In the latter cases, the explicit description of
maximal e-split Levi subgroups in [20, §3.5] together with the fact [27, Tab. 1] that there
are no quasi-isolated elements of order pk, k ≥ 2, in G∗ shows the claim.

Now assume there exists g ∈ G∗ with ta = tg, so conjugation by g makes an orbit of
length p on 〈t〉 = (TF

1 )p. Then g normalises (TF
1 )p and hence also

CG∗((T
F
1 )p)

F = CG∗((T1)Φe)
F = L∗F1 .

But by Lemma 4.7, NG∗(L
∗
1)F/L∗F1 has order prime to p (since p > e), which contradicts

the assumption that g makes an orbit of length p on 〈t〉. Hence t, tσ
∗

are not G∗-conjugate.
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Now let s ∈ G∗ be a semisimple p′-element such that Irr(b) ⊆ Ep(G, s). Since Irr(b)
contains the constituents of RG

L (λ) we may assume s ∈ L∗F . So

t ∈ Z(L∗F1 ) ≤ Z(L∗F ) ≤ CG∗(s).

Note that st and (st)σ
∗

are not G∗-conjugate, since neither are their p-parts. Thus, by [57,
Prop. 7.2] the Lusztig series E(G, st) ⊂ Irr(G) is not σ-invariant. Since E(G, st)∩ Irr(b) 6=
∅ by Lemma 3.13, the statement follows in the case γ = σ.

It remains to consider the case γ = στ where τ is not an inner automorphism of G. Note
that every semisimple conjugacy class of G∗ is stable under inner-diagonal automorphisms
of G∗ (indeed, Inndiag(G∗) is induced by the action of (G̃∗)F on G∗ for some regular

embedding G∗ ↪→ G̃∗ = Z(G̃∗)G∗). It follows that τ fixes the rational series E(G, st)
in the preceding paragraph, and hence γ again does not stabilise E(G, st) which contains
characters from b. �

By Propositions 4.4, 4.5 and 4.6, to complete the proof of Theorem 4.1 we may assume
S is a central quotient of a group G = GF as above, for G simple. We now distinguish
two situations:

(4.8.1) p does not divide |Z(G)|, and G6∼= D4(q) with p = 3;

and

(4.8.2) p divides |Z(G)|, or G ∼= D4(q) with p = 3.

Proposition 4.9. Theorem 4.1 holds in Case (4.8.1).

Proof. Let (G, F ) be such that S is a central quotient of G = GF . Let b be a p-block
of S of non-trivial defect. Since in Case (4.8.1) the order of Z(G) is prime to p, we may
consider b as a block of G. For the groups in (4.8.1), the only outer automorphisms of
p-power order are field automorphisms modulo J = Inndiag(S̄). So by Lemma 4.3, it
suffices to prove parts (a) and (b) of Theorem 4.1, with Q 6= 1 in the case of 4.1(a), or p
divides |HJ/J | in the case of 4.1(b). Then H contains an element γ as in Proposition 4.8.
But then Proposition 4.8 shows the assumptions of 4.1(a), (b) are not satisfied. �

4.3. The groups in Case (4.8.2).

Proposition 4.10. Theorem 4.1 holds for S̄ = O+
8 (q) and p = 3.

Proof. Let b be a 3-block of S. Since Z(G) has order prime to 3 we may consider b as a
block of G and thus assume S = G. To prove any part of Theorem 4.1, it suffices to show
that |H/S̄|, respectively |K/S| is coprime to 3.

Assume the contrary that H, respectively K, contains an element σ that induces an
outer automorphism of order 3 of S̄. By Proposition 4.8 we may assume σ induces a
triality graph automorphism modulo inner-diagonal and field automorphisms. We have
3|(q2 − 1), so e ∈ {1, 2}. Write b = bG(L, λ). Let L∗ ≤ G∗ be dual to L. Let L∗1 ≥ L∗

be a maximal (proper) e-split Levi subgroup of G∗. Then L∗1 is either of type A3 or A3
1.

If all maximal e-split Levi subgroups above L∗ are of type A3
1, then L∗ itself must be of

type A3
1. A computation inside the Weyl group shows that the Levi subgroup of type

W (A3
1) of W (D4) has index 2 in its normaliser. Thus, by [11, Lemma 4.16] a defect group

of b is Z(L)F3 , hence cyclic, which was excluded.



BRAUER’S HEIGHT ZERO CONJECTURE 29

Thus we may choose L∗1 of type A3. Let t be a generator of the cyclic group Z(L∗1)F3 .
Note that there are three G∗-classes of Levi subgroups of type A3 in G∗, each of which
is fixed by inner-diagonal and field automorphisms, and permuted transitively by σ∗. It
follows that the G∗-class of t is not σ∗-invariant. We can now conclude as in the proof of
Proposition 4.8 that b contains characters that are not σ-stable. �

We now show an extension of Proposition 4.8 to groups of type A.

Proposition 4.11. Let G = SLn and assume that p divides |Z(GF )|. Let b = bG(L, λ)
be a p-block of G = GF with abelian defect and assume Z◦(L)Φe has rank at least 2.
Suppose F = F p

0 for a Frobenius endomorphism F0 of G and let σ be the automorphism
of G induced by F0. Then for any inner-diagonal automorphism τ of G, Irr(b) contains a
character that is not στ -stable and is trivial on Z(G)p.

Proof. We have G = SLn(εq) and G∗ = PGLn(εq), with ε ∈ {±1}. The assumption on
|Z(GF )| forces p|(q − ε). First consider the case ε = 1. Then e = 1. Let L∗ ≤ G∗

be dual to L. Up to replacing L∗ by a G∗F -conjugate we may assume that F0 acts on
Z(L∗)Φ1 = Z(L∗) by the q0-power map, where q = qp0. Now Z(L∗)Φ1 has rank at least
two, so there exist at least two maximal proper 1-split Levi subgroups L∗1,L

∗
2 ≥ L∗, with

Z(L∗i ) a 1-torus of Z(L∗) of rank 1. Let ti be a generator of the cyclic Sylow p-subgroup
of Z(L∗i )

F . Then preimages t̃i of ti in GLn(q) (under the natural quotient map) can be
taken as diagonal matrices where t̃i has mi eigenvalues ζ, a primitive kth root of unity
with k = |Z(L∗i )

F |p = |ti| (a p-power), and all other eigenvalues 1, with 1 ≤ m1 < m2 < n
say. We have tσi = F0(ti) = tq0i , so ti is not σ-stable.

Let a1, a2 be integers not both divisible by p such that m1a1 +m2a2 ≡ 0 (mod k). Then
t̃ := t̃a11 t̃

a2
2 has determinant 1, so lies in SLn(q), whence t := ta11 t

a2
2 ∈ [G∗, G∗]. By [47,

Prop. 4.5] this means that any character in E(G, st), for s ∈ L∗ a semisimple p′-element
has Z(G)p in its kernel. Furthermore the class of t is not σ-stable. Now t̃ has eigenvalues
ζa1+a2 , ζa2 and 1, and at least two of those are distinct by the choice of a1, a2. Thus, either
CGLn(q)(t̃) = GLn1(q)×GLn−n1(q) for a suitable 1 ≤ n1 < n, or

CGLn(q)(t̃) = GLm1(q)×GLm2−m1(q)×GLn−m2(q).

All of these have automiser of order at most 2 unless m1 = m2 − m1 = n/3 when it is
S3. Assume we are in the latter case and p = 3. If L∗ itself is of this form, then the
defect groups of b are non-abelian, being a non-trivial extension of Z(L∗)F3 with a Sylow
3-subgroup of the automiser of LF [11, Lemma 4.16]. Otherwise, L∗ has strictly smaller
rank and then we may choose the L∗i such that the centraliser of t̃ is not of this special
form. We may then complete the argument as in the proof of Proposition 4.8.

If ε = −1 (so G is unitary) we may argue in an entirely similar fashion. �

The proof actually shows that the assumption on abelian defect groups can be dropped
when either p ≥ 5, or p = 3 and in addition L is not of type A3

n/3−1.

Proposition 4.12. Theorem 4.1 holds for S̄ = Ln(εq), ε ∈ {±1} and p | (q − ε).

Proof. By our previous reductions and Proposition 4.9 we may assume S is a central
quotient of G = SLn(εq). Let b be a p-block of S with abelian non-cyclic defect and b̃ the



30 G. MALLE, G. NAVARRO, A. A. SCHAEFFER FRY, AND P. H. TIEP

p-block of G dominating it. Then by the proof of [2, Thm 5], one of the following holds

for any block B of GLn(εq) lying above b̃:

(4.12.1) B has abelian defect groups; or

(4.12.2)
p = 3, n = 3m, and Irr(B) ⊆ E3(GLn(εq), s), with C := CGLn(εq)(s) ∼= GL3((εq)m)
for some semisimple 3′-element s ∈ GLn(εq), and ((εq)m − 1)3 = 3.

Now first assume that H or K induce an automorphism γ = στ , where σ is a field
automorphism of S of order p, and τ ∈ J = Inndiag(S). That is, σ is induced by a field
automorphism F0 of G, where after conjugation we may assume F = F p

0 . As p|(q − ε)
and q is a pth power, in fact we have p2|(q − ε), and so we are in case (4.12.1). Also note

that if b̃ = bG(L, λ) then Z◦(L)Φe has rank at least 2 since b̃ has non-cyclic defect. But

then by Proposition 4.11 the block b̃ contains an irreducible character of G not fixed by γ
and trivial on Z(G)p, hence a character of b. Thus the assumptions of any of the parts
(a), (b), and (c) in Theorem 4.1 are not satisfied.

So we may now assume that the p-elements in H and K only induce diagonal auto-
morphisms. In particular, this establishes 4.1(b) and shows that K/S is cyclic. Hence by
Lemma 4.3 it suffices to prove 4.1(a); moreover, using Lemma 4.2 we may assume H/S̄
is a p-group contained in J/S̄.

Suppose we are in the situation of (4.12.1). Since GLn(εq) induces all diagonal au-
tomorphisms on G and thus on S and since H/S̄ is a cyclic p-group, we can find a
p-element g ∈ GLn(εq) such that G1 := 〈G, g〉 induces H while acting on S. Furthermore,

GCG1 ≤ GLn(εq) and G1/G is a p-group. Since every character in b is H-invariant, b̃ is

G1-invariant, and since the defect groups of any G1-block lying above b̃ are abelian, the
statement follows from Proposition 2.4.

Finally we consider the situation of (4.12.2). Recall our hypothesis that the defect group
D of b is abelian but non-cyclic. As shown in the proof of [2, Thm 5], |D| ≤ 32, whence
|D| = 32. On the other hand, B has defect groups of order 34, and (q − ε)3 = 3, so the

defect groups of b̃ have order (at least) 33. It follows that S is a quotient of G by a central
subgroup Z of order z divisible by 3. By Lemma 4.2 we may assume |H/S̄| = (q−ε)3 = 3,
and that H is induced by the conjugation action of G1 := 〈G, g〉 ≤ GLn(εq) for some 3-

element g. As G1/G is a 3-group, b̃ lies under a unique 3-block B1 of G1 and so B1 lies
under B. Since BHZ holds for b by [2], every character θ ∈ Irr(b) has height zero, so the
3-part of its degree is

d := |Ln(εq)|3/32 = |GLn(εq)|3/34.

By assumption, θ is g-invariant, so, viewed as G-character, it extends to a character of G1,
which is still trivial at Z. Thus the degrees of all characters in Irr(B1) that are trivial
at Z have 3-part d.

By [2, Thm 1], Irr(B) consists of all characters in E(GLn(εq), st), for t a 3-element
in C = GL3((εq)m). As θ is trivial at Z and lies under some such character, using [47,
Prop. 4.5] we see that the order of det(st) divides (q−ε)/z. But s is 3′ and t is a 3-element,
so the order of det(s) divides (q − ε)/z. Let ω ∈ F×q2 be of order 3, and consider

t := diag(1, ω, ω2) ∈ SL3((εq)m) < C.
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Then t centralises s, and, as det(t) = 1, det(st) = det(s) has order dividing (q − ε)/z.
Again by [47, Prop. 4.5], the semisimple character χst ∈ E(GLn(εq), st) is trivial at Z.
Any irreducible constituent ψ of the restriction of χst to G1 is also trivial at Z. By
uniqueness of B1, we have ψ ∈ Irr(B1). Since G1 has 3′-index in GLn(εq),

ψ(1)3 = χst(1)3 = |GLn(εq)|3/|CC(t)|3 = |GLn(εq)|3/((εq)m − 1)3
3 = |GLn(εq)|3/33 = 3d,

and this is a contradiction. �

Proposition 4.13. Let S̄ = E6(εq), ε ∈ {±1} with 3|(q− ε). Assume that BHZ for p = 3
holds for all groups of order smaller than |S̄|. Then Theorem 4.1 holds for S̄ at p = 3.

Proof. Let b be a 3-block of S with non-cyclic abelian defect groups and b̂ = bG(L, λ) be

the block of G = GF dominating it. So b = b̂ if and only if S = G. Again we first show
that field automorphisms of order 3 modulo J := Inndiag(S̄) do not point-wise fix all
irreducible characters in b. Let first ε = 1, so G = E6(q) and e = 1. Set Z := (Z◦(L∗)F )3,
a 3-group of rank at least 2. Assume F = F 3

0 and accordingly write q = q3
0. Now F0 acts

by x 7→ xq0 on Z. Let L∗i , i = 1, 2, be two distinct maximal 1-split Levi subgroups of
G∗ containing the dual Levi L∗ ≤ G∗ of L and ti ∈ Z(L∗i )

F
3 ≤ Z generators of the Sylow

3-subgroups. Let ai ∈ Z not both divisible by 3 be such that t := ta11 t
a2
2 ∈ [G∗, G∗]. Then

we have F0(t) = tq0 6= t. Note that t has order divisible by 9.
Now L′ := CG∗(t) is either a maximal proper 1-split Levi subgroup of G∗ or equal to

the intersection L∗1∩L∗2, a Levi subgroup of semisimple rank 4. Assume for a moment that
L′ does not have type D4. Now NG∗(〈t〉) normalises CG∗(t) = L′. But the automiser of
the latter does not contain elements of order 3 by Lemma 4.7, resp. by inspection. Thus, t
is not G∗F -conjugate to F0(t), and we may complete the argument as in Proposition 4.11

to see that Irr(b̂) contains characters trivial on Z(G)F in Lusztig series not fixed by F0.
If L′ has type D4, its automiser is the symmetric group of degree 3. By a computation
in the reflection representation of the Weyl group using [19], there are generators x, y of
the Sylow 3-subgroup of Z(L′)F such that an element w of order 3 in the automiser acts
by x 7→ y 7→ (xy)−1. (Note that Z(L′)F lies in a maximally split torus on which the Weyl
group naturally acts.) Then t := xwx−1 = x−1y is a 3-element in [G∗, G∗]. Now w acts by
tw = x−1y−2, while F0 sends every element in Z(L′) to its qth power. So again, t is not
G∗-conjugate to F0(t) and we conclude as before.

The above result already establishes 4.1(b) and shows that K/S is cyclic in 4.1(c). By
Lemma 4.3, it remains to prove 4.1(a), and we may now assume H only induces diagonal
automorphisms of S, and in fact H = G∗ using Lemma 4.2. First assume S = G. Let

G ↪→ G̃ be a regular embedding and G̃ := G̃F . Then any defect group of b is contained
in a maximally split torus of G and thus defect groups of any block b̃ of G̃ above b
are contained in a maximally split torus of G̃ (see [27, Thm 1.2(b)] for quasi-isolated
blocks and [11, Lemma 4.16] for the others) and so are abelian. Since G̃ induces all
diagonal automorphisms of G, we are done by applying Proposition 2.4 (and arguing as
in case (4.12.1) of the proof of Proposition 4.12).

Finally, assume S = G/Z(G) is the simple group (which is isomorphic to [G∗, G∗] ≤
G∗ = H as duality keeps the root system of type E6). Consider the block b̃ of G∗ covering

b. If b̃ has abelian defect groups, then the statement again follows from Proposition 2.4.
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Assume b̃ has a non-abelian defect group D̃, and is not quasi-isolated. Then its Morita-
equivalent Jordan correspondent block b̃1, of a group of order less than |G∗|/3 = |S̄|, also

has non-abelian defect by [6, Thm 1.1]. By assumption, b̃1 satisfies BHZ, so contains

a character of positive height. But then so does b̃ since the Bonnafé–Rouquier Morita
equivalence [5] preserves heights. Also by assumption, b has abelian defect, and hence all
characters in Irr(b) possess height zero by the main result of [27]. Now the existence of

characters of positive height in b̃ implies that G∗ does not fix all characters in Irr(b). On

the other hand, if b̃ is quasi-isolated then defect groups of b are non-abelian or cyclic by
[27, Prop. 4.3 and Thm 1.2(b)] and [17, pp. 353–354].

For the twisted type groups, that is ε = −1, entirely similar considerations apply. �

Corollary 4.14. Let p be an odd prime and let S be a quasi-simple group. Let S̄ :=
S/Z(S), S̄ ≤ H ≤ Aut(S), and assume Op′(H/S̄) = H/S̄. If b is a p-block of S with
abelian, non-cyclic defect groups such that every character in b is H-invariant, then H/S̄
is a cyclic p-group.

Proof. The statement follows from Proposition 2.2(b) unless S̄ is of type An, 2An, or
p = 3 and S̄ is of type D4 or E6(εq) with 3|(q − ε) and ε ∈ {±1}. In the latter cases,
for J := Inndiag(S) we have p - |HJ/J | by Propositions 4.9, 4.10, 4.12, and 4.13. By
assumption, H/S̄, and hence HJ/J , has no non-trivial p′-quotient. Thus H ≤ J , and the
claim follows from Proposition 2.2(c). �

5. Proofs of Theorems A and C

5.1. Proof of Theorem A. Now we proceed to prove the “only if” implication of
Brauer’s Height Zero Conjecture for primes p > 2. Suppose B is a p-block of G with
defect group D, and assume all χ ∈ Irr(B) have height zero. We want to show that
D is abelian. We will assume that G is a counterexample to BHZ, first with |G/Z(G)|
smallest possible, and then with |G| smallest possible. By the Gluck–Wolf theorem [22],
G is not p-solvable. Recall that if H ≤ G and N EG, then |H : Z(H)| ≤ |G : Z(G)| and
|G/N : Z(G/N)| ≤ |G : Z(G)|.
Step 1. B is a quasi-primitive block; that is, if NEG and e is a block of N covered by B,
then e is G-invariant.

This follows by Fong–Reynolds ([44, Thm 9.14]) and induction.

Step 2. If N is a proper normal subgroup of G, then D ∩ N is abelian. In particular,
Op′(G) = G, D is not contained in any proper normal subgroup of G, and Q := Op(G) is
abelian.

Suppose N is a proper normal subgroup of G and e is a p-block of N covered by B.
By [44, Thm 9.26], we have D ∩N is a defect group of e, using that e is G-invariant (by
Step 1). Let ξ ∈ Irr(e). By [44, Thm 9.4], there is some χ ∈ Irr(B) (of height zero) lying
over ξ. By [42, Lemma 2.2], we have that ξ has height zero. Hence D ∩N is abelian by
minimality of G.

Now, if Op′(G) < G, then D = D ∩ Op′(G) is abelian by the previous claim applied
to N = Op′(G), a contradiction. Finally, since Q = Op(G) < G and Q ≤ D, the claim
applied to N = Q shows that Q = Q ∩D is abelian.
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Now let
C := CG(Q),

so that Q ≤ C.

Step 3. We have that Z(G) has p′-order. In particular, we may assume that C < G or
that Q = 1. Also, if LEG is a non-trivial p-group, then D/L is abelian.

Suppose that 1 < L is a normal p-subgroup of G. Then there is a block B̄ of G/L
contained in B with defect group D/L by [44, Thm 9.9(b)]. By the definition of heights,
all irreducible characters in B̄ have height zero. Thus D/L is abelian, by BHZ applied
to G/L.

Assume now that 1 < L is a central p-subgroup. Let δ ∈ Irr(D), and let ν ∈ Irr(L)
be under δ. Let χ ∈ Irr(B) over ν. Since χ has height zero, it follows that ν extends
to some linear ν̃ ∈ Irr(D), by [41, Thm 4.4], using that ν is G-invariant. By Gallagher’s
Corollary 6.17 of [26], we have δ = ν̃β, for some β ∈ Irr(D/L). Since D/L is abelian by
the previous paragraph, we conclude that δ(1) = 1. Hence D is abelian, contrary to the
choice of G. Hence p - |Z(G)|.
Step 4. If Z := Op′(G), then Z = Z(G) and Z is cyclic.

Let θ ∈ Irr(Z) such that the p-block {θ} of Z is covered by B. We know that θ is
G-invariant. We prove this step using the language of θ-blocks and character triples (see
[52].) We have that (G,Z, θ) is a character triple. By Problems 8.12 and 8.13 of [44], there
exists an ordinary-modular character triple (G∗, Z∗, θ∗) isomorphic to (G,Z, θ), which we
can construct as in [52, Thm 3.4]. Hence Z∗ has order not divisible by p and is central
in G∗. Since G/Z is isomorphic to G∗/Z∗, we have that Z∗ = Op′(G

∗). If

σ : Irr(G|θ)→ Irr(G∗|θ∗)
denotes the associated standard bijection, we have σ(Irr(B)) = Irr(B∗) for a unique p-
block B∗ of G∗. In particular, Irr(B) = Irr(B|θ) is a θ-block. Since σ(χ)(1) = χ(1)/θ(1),
then σ(χ)(1)p = χ(1)p for χ ∈ Irr(B), and so all characters in Irr(B∗) have the same
height (zero).

Let D∗ be a defect group for B∗. We show next that D and D∗ are isomorphic, hence
if D∗ is abelian, then so is D. Since

|G : D|p = χ(1)p = σ(χ)(1)p = |G∗ : D∗|p
and |G|p = |G∗|p, we have that |D| = |D∗|. If Dθ/Z is a θ-defect group of B, then,
by [52, Def. 4.1], we have Dθ/Z ∼= D∗Z∗/Z∗ ∼= D∗. By [52, Thm 5.1], we have that
Dθ/Z ≤ DZ/Z, replacing D by a G-conjugate, if necessary. By comparing orders, we
have that Dθ/Z = DZ/Z is isomorphic to D. Therefore D and D∗ are isomorphic.

Notice that |G∗ : Z(G∗)| ≤ |G∗ : Z∗| = |G : Z| ≤ |G : Z(G)|, using that Z(G) ≤ Z
(by Step 3). Therefore, if |G∗ : Z(G∗)| < |G : Z(G)|, then we are done by applying BHZ
to G∗. In the case of equality, we have Z = Z(G). Finally, we show that Z is cyclic. Let
{λ} be the block of Z covered by B, where λ ∈ Irr(Z). Let K = ker(λ). Hence, K is
contained in ker(χ) for all χ ∈ Irr(B). If K > 1, then we apply [44, Thm 9.9(c)] and BHZ
to G/K. The choice of G shows that K = 1 and therefore, that Z is cyclic.

From now on, let E(X) denote the layer of a finite group X.
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Step 5. We have that C is not p-solvable and E(G) 6= 1.

Assume that C is p-solvable. As Op′(C) = Z is central, we have Op(C/Z) = QZ/Z.
Since C is p-solvable, we have CC/Z(QZ/Z) = QZ/Z. This implies C = QZ. By [46,
Lemma 3.4], then Irr(B) = Irr(G|λ) for some λ ∈ Irr(Z). Let P ∈ Sylp(G), and let

λ̂ = 1P ⊗λ ∈ Irr(P ×Z). Then λ̂G has p′-degree, and therefore it contains some p′-degree
irreducible constituent χ. Now, χ lies over λ, and therefore χ ∈ Irr(B). We conclude that
P is a defect group of B. By hypothesis, p does not divide τ(1) for every τ ∈ Irr(B),
whence P (and hence D) is abelian by the main result of [47]. Since G is a minimal
counterexample, C is not p-solvable.

Next, assume that E(G) = 1. Then E(C) = 1 and F∗(C) = F(C) = Op′(F(C)) ×
Op(C). Now, Op(G) = Q ≤ Op(C) ≤ Op(G), whence Op(C) = Q is central in C, and
Op′(F(C)) ≤ Op′(G) = Z is central in G. It follows that C = CC(F∗(C)) ≤ F∗(C), and
so C is p-solvable, a contradiction to the previous conclusion.

Step 6. Let S be a component of G, and let N be the normal subgroup of G generated by
the G-conjugates of S. Let e be the block of N covered by B, and let b be the only block
of S that is covered by e. Then e is not nilpotent. In particular, there are α, β ∈ Irr(b)
with different degrees.

First notice that b is the only block covered by e, because N is a central product of
the different G-conjugates of S. In particular, every irreducible character of S is N -
invariant. Suppose that e is nilpotent. Let N1 = NZ(G), and let e1 be the unique
block of N1 covered by B and covering b. It is clear that e1 is nilpotent, using the
definition of nilpotent blocks. (See [54, Lemma 7.5].) We have that D1 := D ∩ N1 is a
defect group of e1 (see [44, Thm 9.26]). By Theorem 2.6, there is a finite group L′ with
|L′ : Z(L′)| < |G : Z(G)|, where L′ has a block B′ with defect group D and such that all
the irreducible characters of B′ have height zero. Therefore D is abelian by BHZ applied
to L′. Thus e is not nilpotent.

If all the irreducible characters in b have the same degree, then all the irreducible
characters in e, a central product of the G-conjugates of b, also have the same degree.
Then by [49, Prop. 1 and Thm 3], we have D ∩N is abelian with inertial index one. By
Broué–Puig [9, 1.ex.3], the block e is nilpotent, and we are again done.

Step 7. Let S be any component of G. Suppose B′ is the E(G)-block covered by B and
b is the S-block covered by B′. Then b has non-cyclic defect groups. In particular, no
component of G has cyclic Sylow p-subgroups.

By Step 6, b has non-central defect groups (since any block with central defect groups
is nilpotent, by [9, 1.ex.1]). Suppose that b has cyclic defect groups. Consider the central
product N of the different G-conjugates of S, so that N EG. Let D1 := D ∩N , so that
G = NG(D1)N . Let b0 be the block of N covered by B. Let b1 be the Brauer first main
correspondent of b0, which is the block of NN(D1) that induces b0. Let B1 be the unique
block of NG(D1) that covers b1 and induces B (by the Harris–Knörr Theorem 9.28 of
[44]), which is a block with defect group D. By Theorem 2.7, we conclude that all the
irreducible characters of B1 have height zero. If NG(D1) < G, by BHZ applied to NG(D1)
we will have that D is abelian, a contradiction. Hence D1 E G. In this case, D1 ≤ Q.
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Since [Q,N ] = 1, we conclude that D1 ≤ Z(N), and b0 is nilpotent, in contradiction with
Step 6.

Step 8. All components of G are normal in G.

Suppose that S1 is a non-normal component, and write the normal subgroup N in
Step 6 as N = S1 ∗ S2 ∗ · · · ∗ Sm, a central product of m > 1 components, where G/N
permutes S1, . . . , Sm transitively. In particular, S1, . . . , Sm are isomorphic to each other,
and we fix an isomorphism between S1 and any Si.

Again by Step 1, B covers a unique block e of N which is G-invariant, and e is then the
central product of blocks bi of Si, 1 ≤ i ≤ m. By Step 6, each Irr(bi) contains characters
of different degrees. Furthermore, as before, the block e has defect group D ∩ N , which
is abelian by Step 2. It follows that bi has abelian defect groups, which are non-cyclic
by Step 7. By Theorem 3.1, Irr(bi) contains at least three Aut(Si)-orbits, say of αi, βi,
and γi. For each i and given the fixed isomorphism between S1 and Si, we can view α1,
β1, and γ1 as Si-characters. Relabeling αi, βi, and γi if necessary, we may assume that

(5.1.1)
αi is not Aut(Si)-conjugate to β1 or γ1,
βi is not Aut(Si)-conjugate to α1 or γ1, and
γi is not Aut(Si)-conjugate to α1 or β1.

Since m > 1, the (transitive) permutation action of G on the set {S1, . . . , Sm} is non-
trivial, and so the kernel K of this action is a proper normal subgroup of G containing N ,
and from Step 2 we have Op′(G/K) = G/K. Now applying Theorem 2.1 to G/K we
obtain a partition

{S1, . . . , Sm} = ∆1 t∆2 t∆3

such that ∩3
i=1 StabG/N(∆i) has index divisible by p in G/N . Setting

θ := θ1 ⊗ θ2 ⊗ · · · ⊗ θm,
where θi = αi if Si ∈ ∆1, θi = βi if Si ∈ ∆2, and θi = γi if Si ∈ ∆3, we then see that B
covers the N -block of θ.

Consider any g ∈ G that fixes θ, and suppose that Sg1 = Sj. Note that θ|Sj is a multiple
of θj, and θg|Sj is a multiple of αg1. Again using the fixed isomorphism S1

∼= Sj and writing
every xg with x ∈ S1 as xσ for a suitable σ ∈ Aut(Sj), we can write αg1 as ασ1 , and so
θj = ασ1 and thus α1 and θj are Aut(Sj)-conjugate. Since neither βj nor γj are Aut(Sj)-
conjugate to α1 by (5.1.1), θj must be αj, which means Sj ∈ ∆1 by the choice of the θi’s.
This argument, applied to any Si, shows that g stabilises the partition ∆1 t ∆2 t ∆3.
Thus

Gθ/N ≤
3⋂
i=1

StabG/N(∆i),

and so p divides |G : Gθ|. But this contradicts Proposition 2.5.

Step 9. If S is a (normal by Step 8) component of G, then Z(S) is of p′-order. Also,
if D is any defect group of B and R := D ∩ S, then G = SCG(R), and [D,R] = 1.
Furthermore, every α ∈ Irr(b) (where b is the S-block covered by B) is G-invariant, and
extends to DS. Moreover, G/SCG(S) is a p-group.
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First we prove that there is a defect group D of B satisfying that [D,D ∩ S] = 1 and
G = SCG(S ∩ D). Let b be the block of S covered by B. Notice that CG(S) ≤ K :=
G[b]EG, the Dade group, by the definition of G[b]. (See [43], for instance.) Also, notice
that R = D ∩ S is a defect group of b, and that G = SNG(R), by the Frattini argument.
Let bR be a block of CS(R) with defect group R inducing b, and let T = NG(R)bR . By
Lemma 2.3, there is a defect group D∗ of B such that D∗ ∩ S = R and D∗ ≤ T . For the
sake of notation, we assume that D∗ = D. Let H := G/CG(S) and S̄ = SCG(S)/CG(S).
By Proposition 2.2, we have that G/SCG(S) has a normal p-complement U/SCG(S).
Since |G : U | is a power of p, and B covers a unique block of U , we have G = UD, by
[44, Thm 9.17]. Now, every τ ∈ Irr(b) has the property that |G : Gτ | is coprime to p,
by Proposition 2.5. Let x ∈ D. Let W = U〈x〉. Since |G : Gτ | is p′, then G = UGτ , so
|W : Wτ | is also p′ for every τ ∈ Irr(b). So the hypotheses of Theorem 4.1(a) are satisfied
with the group W/CG(S) and every p-element x ∈ D. Moreover, by the choice of G, BHZ
holds for all finite groups X with |X/Z(X)| < |G/Z(G)|, in particular for all groups of
order less than |S/Z(S)|. We conclude by Theorem 4.1(a) that [x,R] = 1, for x ∈ D.
Hence D ≤ SCG(R)EG. If SCG(R) < G, we are done by Step 2.

Now, let D1 := D ∩ K. By [43, Thm 3.5(ii)], we have D1 = RCD(R) = RD and we
conclude that D = D1. Hence K = G by Step 2 (recall that K is normal in G). Therefore
every α ∈ Irr(b) is G-invariant (by [30, Lemma 3.2(a)], for instance). By Corollary 4.14,
we have that H/S̄ is a p-group. Thus G/SCG(S) is a p-group.

Let θ ∈ Irr(b). Then θ lies under some χ ∈ Irr(B), which by hypothesis has height zero.

By [41, Thm 4.4], we have θ extends to SDg for some g ∈ G. Therefore θ = θg
−1

extends
to SD, as claimed.

Now, we prove that if g ∈ G, then [Dg, Dg ∩ S] = 1 and G = SCG(Dg ∩ S). Indeed,
since S is normal in G, we have that [Dg, Dg ∩ S] = [D,D ∩ S]g = 1. The second part
follows because Dg ∩ S is a defect group of b, and therefore Dg ∩ S = Rs for some s ∈ S.
Thus G = SCG(R) = SCG(Rs).

Suppose 1 < Zp is a Sylow p-subgroup of Z(S). By Step 3, D/Zp is abelian. Since

Zp ≤ Op(S) ≤ D ∩ S, we have that SD/S is abelian. In this case, the block b̃ of SD
that covers b has defect group D (by [44, Probl. 9.4], using that b is G-invariant) and, as
we saw, all irreducible characters of b extend to SD. Using that and the fact that SD/S

is abelian, it follows that all irreducible characters in b̃ restrict irreducibly to S. In this
case, we easily check that all the irreducible characters in b̃ have height zero. If SD < G,
then we are done by minimality of G. So we may assume that SD = G. Since [D,R] = 1,
we have that Zp ≤ Z(G). By Step 3, this is not possible. We conclude that Zp = 1 and
thus p - |Z(S)|.
Final Step. From Step 9, we conclude that

(5.1.2) G/K is a p-group,

where

K :=
⋂

S component of G

SCG(S) = E(G)CG(E(G)) = ECG(E), E := E(G)Z.

We also have F = EQ for

F := F∗(G) = F(G)E(G) = (Q× Z) ∗ E(G).
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If F = G, then G is a central product of an abelian group with quasi-simple groups.
However in this case BHZ holds for G by the quasi-simple case [29], using Corollary 2.9.
Hence we may assume F < G.

Next we show that

(5.1.3) K/F is a p′-group.

Indeed, let T := CG(E) which contains Q. Let c1 be the block of T covered by B, using
Step 1. By minimality of G, c1 has an abelian defect group D1. Note that

(5.1.4) CT (Q) = CG(F ) ≤ F ∩ T = QZ.

Hence, by [46, Lemma 3.4] we have that c1 = Irr(T |λ) for the character λ ∈ Irr(Z) that
lies under B. By inducing 1P1 × λ ∈ Irr(P1Z) to T , where P1 ∈ Sylp(T ) contains Q, we
see that there is some p′-degree irreducible character ν of T over λ. As ν lies in c1, c1 has
maximal defect, and hence D1 ∈ Sylp(T ). Hence the abelian p-group D1 centralizes Q,
and so D1 ∈ CT (Q) = QZ, i.e. D1 = Q, proving (5.1.3).

By Step 1, there is a unique block e of E and a unique block f of F covered by B; in
particular, e is covered by f . Let D be any defect group of B. Then D ∩ F is abelian by
Step 2 (since F < G). Let

R := D ∩ E,
so that R is a defect group of the E-block e. Write

E = Z ∗ S1 ∗ · · · ∗ Sn,
where Si, 1 ≤ i ≤ n, are the components of G, which all are normal in G by Step 8. Since
Di := D ∩ Si is a defect group of the unique Si-block bi covered by e, by Corollary 2.9
we have R = D1 × · · · × Dn (being a direct product since Z(E) = Z is a p′-group). By
Step 9, we have that [D,R] = 1. Also, since [Q,E] = 1 and the Z(Si) are p′-groups by
Step 9, we have

(5.1.5) Q ∩ E = 1 and F = Q× E.
Let c2 be the unique block of C = CG(Q) covered by B, using Step 1. By [44, Cor. 9.21],

we have that B is the unique block of G that covers c2. By (5.1.4), C ∩K = CK(Q) = F .
Since K/F is a normal Hall p-complement of G/F by (5.1.2) and (5.1.3), we have that
C/F is a p-group. Therefore C/E is a p-group by (5.1.5). By [44, Cor. 9.6], c2 is the only
block of C covering e.

Now, fix some ρ ∈ Irr(e), and consider any χ ∈ Irr(G|ρ). We claim that χ lies in B.
If γ ∈ Irr(C) lies under χ and over ρ, then we see that γ lies in c2. In particular χ lies
in a block that covers c2, and therefore χ lies in B, as claimed. Recall that G/K is a
p-group by (5.1.2), and by Step 1, any block c3 of K covered by B is G-invariant. By [44,
Cor. 9.6], B is the unique block of G that covers c3. By [44, Cor. 9.18], and using the
height zero hypothesis, for every τ ∈ Irr(c3) that lies under χ we have p - χ(1)/τ(1). But
K/F is a p′-group by (5.1.3) and F = E × Q by (5.1.5) with Q abelian. It follows that
p - χ(1)/ρ(1). Hence G/E has abelian Sylow p-subgroups by [47, Thm A], and so

(5.1.6) D/(D ∩ E) is abelian.

Now, if Q > 1, then D/Q is abelian by Step 3, and since D/(D ∩ E) is abelian by
(5.1.6), we obtain [D,D] ≤ Q ∩E = 1 using (5.1.5), i.e., D is abelian, and we arrive at a
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contradiction. Thus we have shown

(5.1.7) Q = 1.

For each i, recall that bi is the unique Si-block covered by e. Then any θi ∈ Irr(bi) is
G-invariant and extends to

Hi := SiD

by Step 9. We also have that Hi/Si is a p-group, and [D,D] ≤ D ∩ E by (5.1.6). If
d ∈ D ∩ E, we can write d = xs ∈ E = SiCE(Si) with s ∈ Si and x ∈ CE(Si). Thus
x = ds−1 ∈ Hi centralises Si, i.e., x ∈ CHi(Si) and d ∈ SiCHi(Si). It follows that
[D,D] ≤ D ∩ E ≤ SiCHi(Si), and so

(5.1.8) Hi/SiCHi(Si) is an abelian p-group.

We also note that CHi(Si) has a normal p-complement — indeed, CHi(Si)∩Si = Z(Si) is
a p′-group (by Step 9), and CHi(Si)/Z(Si) ↪→ Hi/Si is a p-group. So CHi(Si) = Z(Si)oQi

for a Sylow p-subgroup Qi of CHi(Si). But then Qi ≤ CHi(Si) centralises Z(Si), so in
fact

CHi(Si) = Z(Si)×Qi

and Qi = Op(CHi(Si))CHi. Note that Op(Hi)∩Si ≤ Op(Si) = 1, implying Op(Hi) = Qi.

Recall that the unique block b̃i of Hi that covers bi has defect group D, by [41, Lemma 2.2];
in particular, Qi CD.

Now Si naturally embeds in
Li := Hi/Qi

as a normal subgroup. Our goal now is to apply Theorem 4.1(c) to Li with respect to the
quasi-simple group

S̄i := SiQi/Qi
∼= Si

and the block b̄i of S̄i which is naturally isomorphic to bi. If yQi ∈ Li centralises SiQi/Qi

(modulo Qi), then [y, Si] ≤ Qi. As Si E Hi, we must have [y, Si] ⊆ Si ∩ Qi = 1, so
y ∈ CHi(Si) = Z(Si)×Qi. Thus CLi(S̄i) = Z(S̄i), and

(5.1.9) Li/S̄i ∼= Hi/SiQi = Hi/SiCHi(Si) is an abelian p-group

by (5.1.8).
Next we show that each θi ∈ Irr(b̄i) extends to Li. By Step 9, θi, considered as a

character of Si, has an extension θ̂i to Hi. Restricting to SiQi = Si ×Qi, we have

θ̂i|Si×Qi = θi ⊗ λ
for a unique linear character λ ∈ Irr(Qi). In particular, λ is Hi-invariant. Recall that
Di = D∩Si, and we have Di ∩Qi ≤ Si ∩Qi = 1, so we can view λ as a character of DiQi

which is trivial at Di, and D-invariant. Since the characters in Irr(bi) are Hi-invariant,
they are also Hi-invariant when considered as characters of b̄i. By Corollary 4.14 applied
to Li with respect to the block b̄i, we have that

Hi/SiCHi(Si) = SiD/(Si ×Qi) ∼= D/(Di ×Qi)

is cyclic. Hence λ extends to a (linear) character ν of D/Di
∼= Hi/Si. Now, viewing ν as

a linear character of Hi/Si, we have that θ̂iν̄ restricts to θi on Si and trivial on Qi, and
thus θi extends to Li, as wanted.
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Since bi and b̄i are isomorphic, in particular DiQi/Qi is a defect group of b̄i. Since D is

a defect group of b̃i, by Lemma 2.10, we have that D/Qi is a defect group of the block b̄i
of Li = Hi/Qi. As θi extends to Li for every θi ∈ Irr(b̄i), and Li/S̄i is an abelian p-group
by (5.1.9), we see that every character in b̄i has height 0. Applying Theorem 4.1(c) to
the block b̄i of S̄i (which again holds in the case p = 3 and Si is of type E6 or 2E6, by
minimality of G), we see that D/Qi is abelian, and thus

[D,D] ≤ Qi ≤ CG(Si).

This is true for all components Si, so [D,D] centralises E = E(G)Z. Since Q = 1 by
(5.1.7), we have E = F . It follows that

[D,D] ≤ CG(E) = CG(F ) ≤ F,

and hence [D,D] ≤ Z(F ), and the latter group is a p′-group, again because Op(G) =
Q = 1 by (5.1.7). Consequently, [D,D] = 1, contrary to the choice of G as a minimal
counterexample. �

5.2. Proof of Theorem C. Having proved Theorem A, and hence BHZ for the prime p,
we now see that the extra assumption for types E6(εq) in Theorem 4.1(a) is always satis-
fied. Hence Theorem C follows from Theorem 4.1(a), if the defect group D is not cyclic.
So suppose now that we have a quasi-simple group S with Z(S) cyclic and p′-prime, that
σ is a p-power order automorphism of S fixing all the irreducible characters of a block b
of S with cyclic defect group D, and that σ stabilizes a block bD of CG(D) that induces b.
We want to show that σ fixes the elements of D. Let N = NG(D). Then bN = (bD)N is
the Brauer First Main correspondent of b. By [31], we know that b satisfies the Alperin–
McKay inductive condition. In particular, there is a bijection Irr(b) → Irr(bN) that
commutes with the action of σ. Hence, all irreducible characters in bN are σ-invariant
too. By [44, Thm 9.12], there is a unique irreducible character θ ∈ Irr(bD) with D ⊆ ker θ.
In particular, θ is σ-invariant. Also, the stabiliser T of bD in N is the stabiliser of θ in N .
Also T/CG(D) is a p′-group by [44, Thm 9.22]. If bT is the Fong–Reynolds block of T
covering bD corresponding to bN , then all irreducible characters in bT are σ-invariant, by
the uniqueness in the Fong–Reynolds correspondence. Notice that bT is the only block
of T that covers bD, by [44, Cor. 9.21]. Finally, let λ ∈ Irr(D) be with o(λ) = |D|,
and consider the irreducible character θλ ∈ Irr(bD), constructed in [44, Thm 9.12]. Let
η ∈ Irr(T |θλ), which necessary belongs to bT and is therefore σ-invariant. Since T/CG(D)
is a p′-group and o(σ) is a power of p, we have that some T -conjugate of θλ is σ-invariant,
by a counting argument. Since θ is T -invariant, then (θλ)

t = θλt for t ∈ T . Hence, we
deduce that µ = λt is σ-invariant for some t ∈ T . Since o(µ) = |D|, we have that µ is
faithful. Therefore, µ(dσ) = µ(d) for all d ∈ D implies that dσ = d for all d ∈ D. �

We conclude the paper with two remarks. First, the assumption p > 2 is crucial for our
approach: the conclusions of Proposition 2.2 and Corollary 4.14, which play a key role at
various steps of the proof of Theorem A, do not hold when p = 2.

Secondly, we would like to point out that Brauer’s Height Zero Conjecture implies its
so-called projective version, as shown in [55], as well as the version for θ-blocks in [52].
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