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Abstract. Recently, Malle and Navarro provided a Galois-theoretic enhancement of
Brauer’s height zero conjecture for principal p-blocks, limited to the case p = 2, utilizing
a specific Galois automorphism of order 2. While they left open the question of whether
a similar result could hold for odd primes, in this paper, we significantly advance their
work by formulating a broader Galois version of the conjecture for any prime p, using
an elementary abelian p-subgroup of the absolute Galois group. We not only strengthen
their result for p = 2, but also prove the conjecture for arbitrary primes p, except when
G contains certain small-rank Lie-type groups as composition factors. Moreover, we
establish the conjecture for almost simple groups and for p-solvable groups.

1. Introduction

Some of the fundamental local/global counting conjectures in representation theory of
finite groups were strengthened by Navarro [35] using the action of Frobenius elements
of Gal(Qab/Q). This strengthening has had a large impact on research in the last two
decades. It was asked in [29] whether there is also a strengthening of Brauer’s height
zero conjecture (which was very recently solved [30]) to include Galois automorphisms.
Brauer’s conjecture, posed in 1955, asserts that if G is a finite group, and B is a Brauer p-
block of G with defect group D, then D is abelian if and only if all the complex irreducible
characters in B have height zero. (Recall that χ ∈ Irr(B) has height zero if χ(1)p =
|G|p/|D| is minimal possible.) The main result of [29] provides such a strengthening for
the principal 2-block. It was proved there that if σ denotes the Galois automorphism that
fixes 2-power order roots of unity and complex-conjugates odd-order roots of unity, then
all σ-invariant irreducible characters in the principal 2-block B0(G) of a finite group G
have 2′-degree if and only if G has an abelian Sylow 2-subgroup. As pointed out in [29],
this result does not extend to arbitrary 2-blocks.

For p a fixed prime number, let J be the subgroup of Gal(Qab/Q) consisting of the
automorphisms of order p that fix all p-power order roots of unity. We write IrrJ (G)
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to denote the set of J -invariant complex irreducible characters of a finite group G and
IrrJ (B0(G)) for the J -invariant irreducible characters in the principal p-block B0(G).

We propose the following conjecture.

Conjecture 1. Let G be a finite group, let p be a prime number and let P ∈ Sylp(G).
Then all characters in IrrJ (B0(G)) have height zero if and only if P is abelian.

This provides the desired Galois strengthening of the height zero conjecture for principal
p-blocks. We prove this conjecture when p = 2 and also when p is odd and certain simple
groups are not composition factors of G. Since σ ∈ J , this result also strengthens the
main result of [29] when p = 2. We remark that the original height zero conjecture had
remained open even for principal p-blocks until recently [28].

As pointed out in [29], the “only if” implication of Conjecture 1 fails for non-principal
blocks when p = 2. It is also easy to find examples in GAP [43] showing that this fails for
non-principal p-blocks also when p is odd; for instance SmallGroup(1701, 119). It is worth
remarking, however, that we have not found counterexamples among blocks of maximal
defect that contain some J -invariant character. If true, proving this for p-solvable groups
would most likely require a version for J -invariant characters of the very deep Gluck-Wolf
theorem [12]. The proof of the general case would probably require a J -version of the
fundamental Navarro–Tiep theorem [37]. This theorem asserts that if G is a finite group,
N E G, θ ∈ Irr(N) and a prime p does not divide χ(1)/θ(1) for every χ ∈ Irr(G) lying
over θ then G/N has abelian Sylow p-subgroups. We plan to address this daunting task
elsewhere.

On the other hand, the conclusion of Conjecture 1 is definitely false for p = 2 if we
define J to be the set of elements of order p of Gal(Qab/Q). For instance, the non-
linear characters of the non-abelian 2-group SmallGroup(16, 6) in [43] are not fixed by
complex conjugation. As we will see in Remark 3.7, there are also counterexamples for
odd primes. Conjecture 1 is also false if we replace J by the set of elements of Gal(Qab/Q)
that fix p-power roots of unity and have order a power of p. SmallGroup(160, 234) is a
counterexample. Therefore it does not seem possible to replace J by a natural larger
subgroup.

The following are our main results.

Theorem 2. Conjecture 1 holds for p = 2.

Theorem 3. Let G be a finite group, let p > 2 be a prime number and let P ∈ Sylp(G).
Suppose that G does not have composition factors isomorphic to S with (S, p) a pair as
listed in Proposition 2.5. Then Conjecture 1 holds for G.

Our proof of Theorem 2 and Theorem 3 relies on a partial strengthening of another
celebrated theorem in character theory of finite groups: the Itô–Michler theorem (see
e.g. [36, Thm 7.1]).

Theorem 4. Let G be a finite group and let p be a prime. Suppose that G does not
have composition factors isomorphic to S with (S, p) a pair as listed in Proposition 2.5.
Then all characters in IrrJ (G) have p′-degree if and only if G has a normal abelian Sylow
p-subgroup. In particular, if p = 2 or G is p-solvable then all characters in IrrJ (G) have
p′-degree if and only if G has a normal abelian Sylow p-subgroup.
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The conclusion of Theorem 4 is definitely false when G = S for some of the pairs (S, p)
listed in Proposition 2.5, see Example 2.6. Notice that when p = 2 or G is p-solvable,
we have a complete J -version of the Itô–Michler theorem. This could be compared with
Theorem A of [14].

Note that the Itô–Michler theorem is a fundamental tool to prove Brauer’s height zero
conjecture for principal blocks. The failure of the J -version of it suggests that completely
new ideas may be necessary to prove Conjecture 1. Our main goal in this paper has been
to give evidence for Conjecture 1. Hopefully this conjecture (and the yet much tougher
possible version for blocks of maximal defect) will stimulate interesting new ideas in this
field.

We remark that we had reduced the proof of Theorem 3 to two sets of questions on
simple groups, addressed in Section 2, when the preprint [15] appeared. In that paper, a
different extension of the Itô–Michler theorem is proved. Those of our questions relating to
Theorem 4 are now handled by a careful analysis and extension of the result of Theorem C
from [15], while those relevant for the proof of Theorem 3, involving statements related
to principal blocks, have to be solved differently. As one step, in particular, we show
Conjecture 1 for almost simple groups. We then prove Theorem 4 and the p-solvable case
of Conjecture 1 in Section 3. We conclude in Section 4 with the proof of Theorem 2 and
Theorem 3.

2. Almost simple and quasi-simple groups

In this section we collect several results on characters of simple and almost simple
groups needed for the proofs of our main theorems.

Let n be an integer. We write Qn := Q(ζ) where ζ is a primitive nth root of unity.
In the proofs we will work with the following subgroup of Gal(Qn/Q). Let Ω = Ω(n) be
the set of elements of order p of Gal(Qn/Qnp). Note that this definition depends on the
integer n and of course on p. If G is a finite group, we often write Ω for Ω(|G|). We let
IrrΩ(G) denote the set of Ω-invariant complex irreducible characters of G and IrrΩ(B0(G))
to denote the Ω-invariant complex irreducible characters in the principal p-block B0(G).
This relates to IrrJ (B0(G)) thanks to the following lemma.

Lemma 2.1. Let G be a finite group and let χ ∈ Irr(G). Then χ is J -invariant if and
only if χ is Ω(|G|)-invariant.

Proof. Clearly all elements of J restrict to elements of Ω := Ω(|G|). Conversely, we show
that elements of Ω lift to elements of the same order in J . It suffices to do this for
σ ∈ Gal(Qrn/Q) of order p, where r runs over primes different from p. The hypotheses
imply that r > 2. Therefore, for all m ≥ n, Gal(Qrm/Q) and Gal(Qrn/Q) are cyclic
groups with the same p-part, with the second group being a factor group of the first one.
In particular, any p-element of Gal(Qrn/Q) lifts to a unique element of the same order of
Gal(Qrm/Q). Hence σ lifts to an automorphism of order p of ∪m≥1Qrm , which moreover
we may choose to act trivially on the linearly disjoint extensions Qk/Q with k prime to r,
so to an element of J . �

In particular, we have the following.
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Corollary 2.2. Let H be a group of order n and let θ ∈ Irr(H). Suppose that m is a
multiple of n. Then θ is Ω(n)-invariant if and only if it is Ω(m)-invariant.

We also record the following observation about Ω(n).

Lemma 2.3. Assume that r is a prime such that r 6≡ 0, 1 (mod p). Then Ω(n) acts
trivially on Qr.

Proof. Let ξ ∈ Qr be a primitive rth root of unity and let σ ∈ Ω(n). Then ξσ = ξk for
some k relatively prime to r, so that ξk

p
= ξσ

p
= ξ. But then r divides kp − 1, so either

ξk = ξ or k has order p modulo r. In the latter case, p divides r − 1, contradicting that
r 6≡ 1 (mod p). It follows that σ fixes ξ, so Ω(n) acts trivially on Qr. �

2.1. Extensions of Itô–Michler for almost simple groups. We consider the follow-
ing setting: G is a simple linear algebraic group of simply connected type and F : G→ G
is a Steinberg endomorphism with (finite) group of fixed points G = GF . We let (G∗, F )
be in duality with (G, F ) and G∗ := G∗F (see e.g. [10, Def. 1.5.17]). For q a prime power
we denote by ep(q) the order of q in F×p .

Recall that a character χ of a finite group is p-rational if its character field Q(χ) is
contained in Qn for some n prime to p.

Lemma 2.4. Let G = GF , G∗ = G∗F be as above with p a prime different from the
underlying characteristic of G. Assume there is a prime r 6≡ 0, 1 (mod p) with:

(1) r does not divide |Z(G)|; and
(2) there is an r-element s ∈ G∗ which does not centralise a Sylow p-subgroup of G∗.

Then S = G/Z(G) has an irreducible p-rational and Ω(|S|)-invariant character of degree
divisible by p.

Proof. Since r does not divide |Z(G)| = |G∗ : [G∗, G∗]| (see [31, Prop. 24.21]) we have
s ∈ [G∗, G∗]. Further, we have (CG∗(s)/CG∗(s)

◦)F = 1 using [31, Prop. 14.20]. But
then applying [10, Cor. 2.6.18, Lemma 2.6.20, Rem. 2.6.15], we see there exists a unique
semisimple character χ ∈ Irr(G) in the Lusztig series of s (see [10, Def. 2.6.9, 2.6.10])
and this has Z(G) in its kernel by [37, Lemma 4.4], hence descends to a character of S.
By Jordan decomposition [10, Thm 2.6.11] the degree of χ is divisible by the p-part of
|G∗ : CG∗(s)|, hence by p. From the explicit definition of χ as a linear combination of
Deligne–Lusztig characters, the character field Q(χ) is contained in Qr; since r 6= p this
shows that χ is p-rational and, as r 6≡ 1 (mod p), also that χ is Ω(|G|)-invariant using
Lemma 2.3. �

Proposition 2.5. Let S be a non-abelian simple group and p > 2 a prime divisor of |S|.
If all p-rational irreducible characters of S which are Ω(|S|)-invariant have p′-degree, then
one of the following holds:

(1) S = 2B2(q2) with q2 = 22f+1 and p|(q2 + ε
√

2q + 1), ε ∈ {±1}, and all prime divisors
of (q2 − 1)(q2 − ε

√
2q + 1) are congruent to 1 (mod p);

(2) S = PSL2(q) with p|(q−ε), and all prime divisors of (q+ε)/ gcd(2, q+ε) are congruent
to 1 (mod p);

(3) S = PSU3(q) with q = 22f+1 and p = 3, and all prime divisors of (q− 1)(q2− q+ 1)/3
are congruent to 1 (mod 3);
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(4) S = PSL4(q) with q = 22f+1 and p = 3, and all prime divisors of (q3 − 1)(q2 + 1) are
congruent to 1 (mod 3);

(5) S = PSU4(q) with p|(q − 1), and all prime divisors r > 2 of (q3 + 1)(q2 + 1) are
congruent to 1 (mod p).

Proof. For the sporadic simple groups, the claim is easily checked from the Atlas [4] or
using [43]. Now assume S = An with n ≥ 5. If p ≥ 5 there exists a p-core of size n [13],
that is, an irreducible (and rational) character of Sn of p-defect zero. Its restriction to An

has at most two constituents which hence must be Ω-invariant and still of p-defect zero,
so p-rational. If p = 3 then we take for χ the character of Sn labelled by the partition
(n − 2, 2), (n − 2, 12) of degree n(n − 3)/2, (n − 1)(n − 2)/2 respectively, at least one of
which is divisible by 3. Again, its restriction to An has at most two constituents and thus
is Ω(|S|)-invariant.

Thus, finally S is of Lie type and p > 2. If (S, p) is an exception to the claim, then
in particular, all rational irreducible characters of S must have p′-degree. Thus (S, p)
appears in the conclusion of [15, Thm C]. We discuss these cases, numbered (1)–(7), in
turn, striving to exhibit a suitable prime r such that Lemma 2.4 applies. For this, except
for case (1), we view S as G/Z(G) for G = GF for a simple simply connected group G with
a Frobenius map F : G → G. Note that in all cases p is not the defining characteristic
of S, as otherwise the Steinberg character is as desired (see the proof of [15, Thm C]).

(1) Here S = 2B2(q2) with q2 = 22f+1 and p|(q2 + ε
√

2q + 1). If r 6= p is a prime divisor
of (q2 − 1)(q2 − ε

√
2q + 1) with r 6≡ 1 (mod p) then r is as required in Lemma 2.4.

(2) Here S = PSLn(q) and n < p|(q − 1). We may assume n > 2 since the case n = 2 is
treated in (4) below. Then we have

(qn−1 − 1)/(q − 1) ≡ n− 1 (mod q − 1) ≡ n− 1 (mod p) 6≡ 0, 1 (mod p),

hence (qn−1 − 1)/(q − 1) has a prime divisor r 6≡ 0, 1 (mod p). Since r divides
(qn−1 − 1)/(q − 1) we have r is prime to |Z(G)| = gcd(n, q − 1), with G = SLn(q).
Let s be a (semisimple) element of G∗ = PGLn(q) generating the Sylow r-subgroup
of a (cyclic) maximal torus of order qn−1 − 1. As s is not contained in a maximally
split torus of PGLn(q) (whose exponent is q − 1, while by the choice of r, the order
of s is larger than (q− 1)r), s does not centralise a maximally split torus of PGLn(q),
hence does not centralise a Sylow p-subgroup of G∗ by [31, Thm 25.19]. Thus all
assumptions of Lemma 2.4 are satisfied and this case is not an exception.

(3) Here S = PSUn(q) and 2 < n < p|(q + 1). Now

(qn−1 − (−1)n−1)/(q + 1) ≡ n− 1 (mod q + 1) ≡ n− 1 (mod p) 6≡ 0, 1 (mod p),

hence (qn−1 − (−1)n−1)/(q + 1) has a prime divisor r 6≡ 0, 1 (mod p), and as before,
r is prime to |Z(G)| = gcd(n, q + 1), with G = SUn(q). The rest of the argument is
now entirely analogous to the previous case to show that Lemma 2.4 applies.

(4) Here S = PSL2(q), S = PSL4(q) with ep(q) = 2, or S = PSL3(q) with p = 3|(q − 1).
In the latter case, q + 1 ≡ 2 (mod 3), so q + 1 has a prime divisor r ≡ 2 (mod 3).
Let s be an element of order r in the dual group G∗ = PGL3(q). Since r divides
q + 1, the centraliser of s in G∗ does not contain a Sylow 3-subgroup of G∗, and r
does not divide |Z(SL3(q))|. Thus, Lemma 2.4 applies. Now assume S = PSL2(q). If
p|(q − ε) and q + ε has a prime divisor r > 2 with r 6≡ 1 (mod p) then we are done
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by Lemma 2.4. Similarly, if 2|(q + ε)/2 then the characters of S of degree (q − ε)/2
have values in Q(

√
±q) (see [10, Tab. 2.6]), so are p-rational and Ω-invariant. Finally,

let S = PSL4(q) with 2 < p|(q + 1). If p > 3 then let r be any prime divisor of
q − 1 ≡ −2 6≡ 1 (mod p) which is not congruent to 1 (mod p) and s an element
of maximal r-power order in G∗. If p = 3 and q is odd, let s 6= 1 be a 2-element
in PSL4(q) = [G∗, G∗] not centralising a Sylow 3-subgroup of G∗, and we may again
conclude. Finally, when p = 3 and q is even (and hence an odd 2-power), then
whenever r is any prime divisor of (q3 − 1)(q2 + 1) not congruent to 1 (mod 3), we
can again apply Lemma 2.4.

(5) Here S = PSU4(q) with p|(q − 1) or S = PSU3(q) with p = 3|(q + 1). In the latter
case, if q is odd then take for s a 2-element of G∗ of maximal possible order (and
hence not centralising a Sylow 3-subgroup), and apply Lemma 2.4. If q is even, and
there is a prime r not congruent to 1 (mod 3) dividing (q− 1)(q2− q+ 1)/3, this will
do. Finally, if S = PSU4(q) with p|(q − 1), we are done by Lemma 2.4 if there is a
prime divisor r > 2 of (q3 + 1)(q2 + 1) not congruent to 1 (mod p).

(6) Here S = PSO+
2n(q) with n ∈ {5, 7} and p|(q + 1). If p = 3 any (rational) unipotent

character of degree divisible by q2− q+ 1, hence by p, is as desired. So assume p > 3.
Then there exists a prime divisor r 6= p of q2 − q + 1 ≡ 3 (mod p) not congruent to 1
modulo p. Let s be an element generating a Sylow r-subgroup of a torus of order q3+1
in G∗, where G = Spin+

2n(q). Since r 6= 2 this satisfies the assumptions of Lemma 2.4.
(7) Here S = PSO−2n(q) with

(n, ep(q)) ∈ {(4, 1), (4, 2), (4, 4), (5, 1), (6, 1), (6, 2), (7, 1), (8, 1), (8, 2)}.
First assume ep(q) = 1, so p|(q − 1). If p = 3 we use a (rational) unipotent character
of degree divisible by q2 + q+ 1, so by 3. If p 6= 3 there exists a prime divisor r 6= p of
q2 + q + 1 ≡ 3 (mod p) not congruent to 1 modulo p, and any r-element generating a
torus of order q3−1 in the dual group G∗ of G = Spin−2n(q) satisfies the assumptions of
Lemma 2.4. Next assume ep(q) = 2. Again, when p = 3 there is a suitable unipotent
character of degree divisible by q2 − q + 1. Otherwise, let r be a prime divisor of
q2 − q + 1 ≡ 3 (mod p) not congruent to 1 modulo p, and argue as before. So finally
S = PSO−8 (q) and 2 6= p|(q2 +1). With r a prime divisor of q2 +q+1 ≡ q 6≡ 1 (mod p)
not congruent to 1 modulo p, we are done as before. �

Example 2.6. The second case listed in Proposition 2.5 is a true exception, for example
the groups S = PSL2(q) with

(p, q) ∈ {(3, 8), (5, 61), (7, 421), (11, 397), (13, 157), (17, 613), (19, 457), (23, 277)},
and similarly the first case is a true exception for example when S = 2B2(8) with p = 5.
We have not tried to determine whether there are cases with arbitrarily large p.

Example 2.7. The sporadic simple group J1 has only three irreducible characters of
degree divisible by 3; they are cyclically permuted by the Galois automorphism of order 9
of Q19/Q (see [4]), but fixed by the elements of order 3 in Ω(19).

Theorem 2.8. Let A be an almost simple group with socle S such that A/S is a p-group
for a prime p dividing |A|. If A has no Ω(|A|)-invariant irreducible character of degree
divisible by p, then p 6= 2 and (S, p) is as in (1)–(5) of Proposition 2.5.
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Proof. First assume p is odd. Assume there is a p-rational and Ω-invariant character
χ ∈ Irr(S) of degree divisible by p. Then by [19, Thm 6.30], χ has a unique p-rational
extension χ̃ to its inertia group IA(χ), which then, by uniqueness, must also be Ω-invariant.
Then χ̃A is an Ω-invariant character of A of degree divisible by p, contradicting our
assumption. Hence, we arrive at (S, p) being one of the exceptions in Proposition 2.5.

This leaves the case when p does not divide |S|. Then according to the classification,
p ≥ 3, and p ≥ 5 unless S is a Suzuki group. Thus, necessarily S is of Lie type and A/S
is generated by field automorphisms (see e.g. [4, Tab. 5]), say A/S = 〈γ〉 with |γ| = pa.
Now as before let G = GF be such that S = G/Z(G), for G simple of simply connected
type, and let G∗ = G∗F be a dual group. Then γ is induced by a field automorphism
of G. Assume for the moment that S is not a Suzuki or Ree group, and defined over the
finite field Fq. Then the centraliser CG(γp

a−1
) is of the same Lie type over the subfield Fq0

of Fq with q = qp0. Let d be maximal with respect to Φd dividing the order polynomial

of G. Then |G| is divisible by Φd(q
p
0) and hence by Φdp(q0), while |CG(γp

a−1
)| is not. Let

r be a Zsigmondy prime divisor of Φdp(q0) (note that here p ≥ 5), so r does not divide

|CS(γp
a−1

)|. An obvious modification of the argument yields that such a prime also exists
if S is a Suzuki or Ree group.

Let s ∈ [G∗, G∗] be an r-element. By the construction of r, it does not divide |Z(G)| and
thus by the argument in the proof of Lemma 2.4, there is a unique semisimple character χs
of G in the Lusztig series corresponding to s, and χs is trivial on Z(G). Then, considered
as character of S, χs has values in Qrb for some b ≥ 0. Assume χs is fixed by some
power γm. Then the class of s is fixed by the dual automorphism (γ∗)m of G∗ (see [41,
Prop. 7.2]). Since p does not divide |S| and hence neither |G∗|, the class length of s is
prime to p, and so a suitable conjugate of s itself is fixed by (γ∗)m. As r does not divide

|CG(γp
a−1

)| = |CG∗(γ
∗pa−1

)|, this forces (γ∗)m = 1. We conclude that χs lies in an orbit
of length |γ| under A, so the induced character χA is irreducible.

By the choice of s, the values of χA lie in a subfield of index |γ| = pa > 1 of Qrb , which
is in the fixed field of Ω.

Now assume p = 2. By [42, Thm C], there is a rational-valued character in Irr(A) of
even degree unless S = PSL2(q) with q = 3f and f ≥ 3 is odd. Consider the latter case.

Since A/S is a 2-group, we have A ∈ {S, S̃}, where S̃ := PGL2(q). Let r be a prime
divisor of (q − 1)/2 and χ an irreducible Deligne–Lusztig character of SL2(q) labelled by
an element in PGL2(q) of order r, so of even degree q + 1. Then χ has values in Qr by
[10, Tab. 2.6] and it has Z(SL2(q)) in its kernel as r is odd. The unique involution in
Gal(Qr/Q) acts as complex conjugation, but χ is real by loc. cit. Since Q(χ) ≤ Qr, then
χ is Ω(|S|)-invariant. Moreover, χ is in fact the restriction of an irreducible character in

Irr(S̃) with the same field of values, so the proof is complete. �

The following result on quasi-simple groups will be needed in the proof of Theorem 3:

Theorem 2.9. Let p be a prime number. Let S be a non-abelian simple group with abelian
Sylow p-subgroups. If G is quasi-simple with G/Z(G) = S and |Z(G)| = p, then there
exists a faithful χ ∈ IrrΩ(|G|)(B0(G)) (and hence of degree divisible by p).

Proof. First assume p = 2. The non-abelian simple groups with abelian Sylow 2-subgroups
are PSL2(q) with q ≡ 3, 5 (mod 8) or q even, the Ree groups, and J1. Of these, only
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PSL2(q) with q ≡ 3, 5 (mod 8) have covering groups G = SL2(q) as in the claim. Now
SL2(q) has a rational faithful irreducible Deligne–Lusztig character of degree q − 1 (if
q ≡ 3 (mod 8)) respectively q + 1 (if q ≡ 5 (mod 8)) labelled by an element of order 4 in
the dual group PGL2(q), hence lying in the principal 2-block (e.g. by [9, Prop. 6]).

So now assume p ≥ 3. The non-abelian simple groups with order of the Schur multiplier
divisible by an odd prime p are PSLn(εq) with p| gcd(n, q − ε), and for p = 3 groups of
type E6(εq), A6, A7, and some of the sporadic simple groups. The groups E6(εq) have
a section isomorphic to PSL5(q), and PSLn(εq) has a section PSLp(εq) when p|n. Now
the normalisers of a suitable maximal torus of SLp(εq) contains a natural non-abelian

subgroup Cp−1
q−ε .Cp whose image in PSLp(εq) is easily seen to be non-abelian unless p = 3

and εq ≡ 4, 7 (mod 9). For the sporadic groups, the ones with abelian Sylow 3-subgroup
can be identified from the Atlas [4]. Thus, the groups with abelian Sylow p-subgroups
to consider only occur for p = 3, namely PSL3(q) with q ≡ 4, 7 (mod 9), PSU3(q) with
q ≡ 2, 5 (mod 9), A6, A7, M22 and ON . Here, the groups PSL3(εq) have faithful characters
of degree (q2− 1)(q− ε) with values in Q3, labelled by an element of order 3 in PGL3(εq),
so lying in the principal 3-block. Using [43], the groups 3.A6, 3.A7, 3.M22, and 3.ON
are seen to have faithful characters of degrees 6, 15, 231, 495 respectively lying in the
principal 3-block, with values in Q3. This completes the proof. �

2.2. Some observations on extending unipotent characters. We continue to con-
sider connected reductive linear algebraic groups G with a Steinberg endomorphism
F : G→ G. The next result will be useful when dealing with graph automorphisms.

Lemma 2.10 (Digne–Michel). Let G be of type An−1, E6, or Dn with F inducing an
Fq-structure, and G = GF . Let τ be a non-trivial graph automorphism of G. Then
any τ -invariant unipotent character χ lying in the principal series of G extends to a
rational-valued character χ̃ of G〈τ〉, unless either G = E6(q) and χ ∈ {φ64,4, φ64,13}, or
G = An−1(q) and χ is labelled by a partition λ = (λ1, . . . , λr) of n with∑

i

(
λi
2

)
−
∑
j

(
λ′j
2

)
+

(
n

2

)
≡ 1 (mod 2),

where λ′ = (λ′1, . . . , λ
′
s) is the partition conjugate to λ. In the latter cases, Q(χ̃) = Q(

√
q).

Proof. This follows from [8, Thm 3] but can also be extracted from [6, Thm II.3.3]. Note
that all unipotent characters under consideration are rational-valued, by [2, Thm 2.9]. �

Given a normal subgroup N of a group G and θ ∈ Irr(N), we will write IG(θ) or Gθ to
denote the inertia group of θ in G. In the case of field automorphisms, the following is
also useful:

Lemma 2.11. Let G be simply connected with a Frobenius map F such that S = G/Z(G)
is simple, where G := GF . Let χ ∈ Irr(S) be the deflation of a principal series unipotent
character. If S ≤ A ≤ Aut(S) is such that A is generated by inner-diagonal and field
automorphisms, then χ has an extension χ̂ to IA(χ) with Q(χ̂) ≤ Q(χ).

Proof. By [25, Thm 2.4], every unipotent character of S extends to its stabilizer in Aut(S).

We may view A as a subgroup of Ĝad := S̃ o 〈F0〉, where S̃ := GF
ad is the group of inner-

diagonal automorphisms, induced by the fixed points of the group of adjoint type, and F0
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is an appropriate field automorphism. (See [31, Thm 24.24] and the discussion above it.)

Then we view χ as the restriction of a principal series unipotent character χ̃ of S̃ with the
same inertia group in Aut(S) as χ, using [25, Prop. 2.1]. The claim then follows directly

from [39, Prop. 2.6] (and its generalization [21, Prop. 8.7]) applied to Ĝad and χ̃, as in
the notation of [39, Prop. 2.6], χ̃ is in the Harish–Chandra series of the cuspidal character

δ = 1 of a Levi subgroup L, in this case a torus of GF
ad, which extends trivially to δ̂ = 1 of

L̂ = L〈F0〉. Namely, we obtain an extension ˆ̃χ of χ̃ to IĜad
(χ̃) with Q(ˆ̃χ)) ≤ Q(χ) = Q(χ̃)

and let χ̂ be its restriction to IA(χ). �

Using the above lemma, the following is proved in Lemma 4.4 of [33]:

Lemma 2.12. Let p be a prime and G be simply connected defined in characteristic
distinct from p, with a Steinberg map F such that S = G/Z(G) is simple, where G := GF .
Then there exists a non-trivial, rational-valued unipotent character χ ∈ Irrp′(B0(S)) such
that if S ≤ A ≤ Aut(S) and A is generated by inner-diagonal and field automorphisms,
then there is an extension χ̂ of χ to IA(χ) that is rational-valued.

We will also use the following in the case p = 2.

Proposition 2.13. Let S be a simple group of Lie type defined in odd characteristic,
different from types A1, 2A2 and 2G2. Then the principal 2-block B0(S) contains a rational
unipotent principal series character χ of even degree such that if S ≤ A ≤ Aut(S) and A
is generated by inner-diagonal and field automorphisms, then χ has a rational extension
χ̂ to IA(χ).

Proof. Suppose first that S is of classical type. Then all unipotent characters of S are
rational (see [10, Cor. 4.4.24]) and lie in the principal 2-block (see [9, Prop. 6]). Since
the Weyl group of S has an irreducible character of even degree unless we are in the
excluded cases, the claim follows by the arguments in [23, 2.3]. Now assume S is of
exceptional type. Then by [9, Thm A] all principal series unipotent characters lie in
B0(S). Almost all of these are rational by [10, Cor. 4.5.6]. From the lists of charac-
ter degrees printed, for example, in [3, §13] it is then immediate to identify rational
unipotent characters in the principal series having even degree: the characters denoted
φ2,1, φ2,1, φ

′
8,3, φ6,1, φ

′
2,4, φ168,6, φ8,1 for the types G2,

3D4, F4, E6,
2E6, E7, E8 respectively.

The second claim now follows from Lemma 2.11. �

2.3. Existence of certain character extensions. We work towards a proof of Conjec-
ture 1 and begin with some additional results about extensions.

When S is a simple group of Lie type, we write Aut(S) = S̃ o D, where S̃ is the
group of inner-diagonal automorphisms and D is an appropriate group of graph-field
automorphisms, see [11, Thms 2.5.12 and 2.5.14].

Theorem 2.14. Let A be an almost simple group with socle S. Suppose that A/S is a
p-group. Then there exists 1S 6= ϕ ∈ IrrΩ(S) that extends to an Ω-invariant character ϕ̂ of
IA(ϕ). Furthermore, if p divides |S| we can take ϕ̂ to lie in the principal p-block of IA(ϕ).
In this case, ϕ̂ ∈ Irr(B0(IA(ϕ))) can be chosen to be rational-valued, except possibly when
S = PSL2(pf ), or when p = 2 and S = PSL3(±2f )} or A = S = 2B2(q2).
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Proof. We see from [18, Lemma 4.1] that there is a non-trivial rational-valued character
ϕ ∈ Irr(S) that extends to a rational-valued character of Aut(S), so the first statement
holds.

For the second statement, since A/S is a p-group and hence B0(IA(ϕ)) is the unique
p-block of IA(ϕ) above B0(S), it suffices to show that a ϕ satisfying the first statement
can be chosen in B0(S). For the third statement, we wish to ensure that further ϕ̂ is
rational-valued, when S is not one of the listed exceptions.

For the sporadic groups and the alternating group A6, this may be checked in GAP [43].
Next, suppose that S = An with n ≥ 5, n 6= 6. Then A ∈ {An,Sn}. The character of Sn

corresponding to any non-self-conjugate partition of n with p-core (r), where n = ap+ r
with 0 ≤ r < p, will lie in B0(Sn) and restrict irreducibly to B0(An), giving a rational
character of S that extends to a rational character in B0(A). More specifically, we may
take the partition (n− 1, 1) if r = 0; (ap− 1, 2) if r = 1; and (r, 1ap) if r > 1.

Now let S be a simple group of Lie type. First, assume that p is not the defining
characteristic for S. Suppose that p ∈ {2, 3}. Then the Steinberg character StS lies in
B0(S), using [9, Thm A] and [24, Thm 6.6], and extends to a rational-valued character
of Aut(S) by [40]. If instead p ≥ 5, note that A is generated by inner-diagonal and field
automorphisms, since A/S is a p-group. Then the result follows from Lemma 2.12.

Now assume that S is a group of Lie type defined in characteristic p. We have
Irr(B0(S)) = Irr(S) \ {StS} by [17], so it suffices to know that there is a character
ϕ 6∈ {1S, StS} that extends to an Ω-invariant (in fact rational, except in the stated excep-

tions) character of IA(ϕ). Recall that Aut(S) = S̃ oD. We have p - |S̃/S| and all Sylow
subgroups of D are abelian, and hence the Sylow p-subgroups of Aut(S)/S are abelian.
In particular, A/S is abelian.

If S = 2F4(q2) or 2B2(q2), then p = 2 and |Aut(S)/S| is odd, so in this case A = S.
When S = 2B2(q2) we take for ϕ one of the two cuspidal unipotent characters, with values
in Q4, and when S = 2F4(q2) any non-trivial rational unipotent character apart from the
Steinberg character. Observe that for 2B2(q2) there is no suitable rational character.

If S = 2G2(q2), then p = 3 and we may take ϕ to be the semisimple character of degree
q4 − q2 + 1 labelled by the class of involutions in G∗ ∼= S. Then ϕ is rational-valued, and
note that 3 - ϕ(1). Since A/S is a 3-group, ϕ extends to a rational-valued character of A
by [36, Cors 6.2 and 6.4]. We therefore assume that S is not a Suzuki or Ree group.

First suppose that S = PSLn(εq) with n ≥ 4, q = pf , and ε ∈ {±1}. Write D = 〈τ, Fp〉,
where τ is a graph automorphism of order 2 and Fp is a generating field automorphism

of order f if ε = 1, respectively 2f if ε = −1. Let λ denote the partition (n−4
2

+ 2, 2, 1
n−4
2 )

if n ≡ 0 (mod 4), the partition (n−1
2
, 1

n−1
2 ) if n ≡ 1 (mod 4), and the partition (n− 2, 2)

if n ≡ 2, 3 (mod 4). Then λ does not satisfies the condition in Lemma 2.10. Hence the

corresponding unipotent character χλ ∈ Irr(S̃) extends to a rational-valued character of

S̃〈τ〉. As χλ lies in the principal series, it further extends to a rational-valued character

of S̃〈Fp〉, by Lemma 2.11. Note that if p ≥ 3 or f is odd, then A ≤ S̃〈Fp〉 or A ≤ S̃〈τ〉,
since A/S is a p-group. Then ϕ := (χλ)S extends to a rational-valued character of IA(ϕ)
in these cases.

So now assume p = 2 and f is even. Since Aut(S)/S̃ is abelian and any unipotent
character extends to Aut(S) by [25, Thms 2.4, 2.5], we have any character of Aut(S)
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lying above χλ is an extension by Gallagher’s theorem. From above, any extension of χλ
to S̃〈τ〉 is rational. Choosing ϕ̂ an extension of χλ to Aut(S) to be such that ϕ̂|S̃〈Fp〉 is

the rational extension of ϕ guaranteed by Lemma 2.11, we obtain ϕ̂|A is rational-valued.
Next, consider the case S = PSL3(εq) with q = pf . We remark first that if ε = 1 and

either f is even or p is odd, the same arguments as above but with λ = (2, 1) yield a
unipotent character ϕ 6∈ {1S, StS} that extends to a rational character of IA(ϕ).

Let G̃ := GL3(εq) and let G := SL3(εq). Assume p is odd. Let s = diag(−1,−1, 1) ∈
G ∼= [G̃∗, G̃∗]. Then the semisimple character χs of G̃ is trivial on Z(G̃), restricts irre-
ducibly to G, and has degree prime to p. Further, χs is rational-valued. Then taking
ϕ ∈ Irr(S) to be the deflation of χs|G and applying [36, Cors 6.2 and 6.4], we see ϕ
extends to a rational-valued character of IA(ϕ).

Now assume p = 2. Let s = diag(ζ, ζ−1, 1) ∈ G ∼= [G̃∗, G̃∗] with 3 < |ζ| a prime power
dividing q − ε. Note that this is possible since q 6= 2 in the case ε = −1 as S is assumed
simple, and q 6= 4 in the case ε = 1 since f is odd. Then the semisimple character

χs ∈ Irr(G̃) restricts irreducibly to G, is trivial on Z(G̃), and has odd degree. Further,
ζσ ∈ {ζ, ζ−1} for any Galois automorphism σ of order 2 since (Z/|ζ|Z)× is cyclic. Then
χσs = χs for any σ ∈ Ω. Let ϕ ∈ Irr(S) be the deflation of the restriction of χs to G.
Then again by [36, Cors 6.2 and 6.4], we have an extension of ϕ to IA(ϕ) that is also
Ω-invariant.

Now consider the case S = PSL2(q) with q = pf . If q ≤ 9, then we can check directly
in GAP or use the well-known isomorphisms with alternating groups to see the statement
holds. So, assume q ≥ 11. If p is odd, then by [10, Tab. 2.6] there are two characters of S
of degree q+η

2
, where η ∈ {±1} with q ≡ η (mod 4), which are Ω-stable and have p′-degree,

so again possess an Ω-invariant extension to IA(ϕ) by [36, Cors 6.2 and 6.4]. We may

therefore assume that p = 2. Let G̃ := GL2(q) and note that S = SL2(q). Let s ∈ G̃∗ be an
element with eigenvalues {ζ, ζ−1}, where |ζ| is a prime dividing q+1. If σ ∈ Ω has order 2,

then as above, ζσ ∈ {ζ, ζ−1}, so the corresponding semisimple character χs ∈ Irr(G̃) is

σ-invariant, whence χs ∈ IrrΩ(G̃). Further, χs has odd degree and restricts irreducibly
to S. Then letting ϕ denote this restricted character, we have ϕ ∈ Irr2′,Ω(B0(S)) since
ϕ 6= StS. Again applying [36, Cors 6.2 and 6.4], ϕ has an Ω-invariant extension to IA(ϕ).

We may now assume that S = G/Z(G) where G is not of type A, 2A, or Suzuki or
Ree type. The principal series unipotent characters are rational-valued except for a small
number of exceptions for S = E7(q) and E8(q), by [2, Thm 2.9]. Further, in our remaining
cases, there is always a principal series unipotent character ϕ 6∈ {1S, StS} (and hence in
B0(S)) that is rational-valued, distinct from the exceptions for E6(q) in Lemma 2.10, and
of degree divisible by p. (The principal series unipotent characters are described in [3,
Sec. 13.8, 13.9].) In the case of B2(2n) with n ≥ 2 and F4(2n) with n ≥ 1, we may take
ϕ to be the character indexed by the symbol

(
1,2
0

)
, respectively the character φ′8,3 in the

notation of [3, Sec. 13.9], which is stable under field automorphisms but moved by the
exceptional graph automorphism by [25, Thm. 2.5]. That is, in the latter cases, IA(ϕ)
is generated by S and field automorphisms. Then using Lemmas 2.11 and 2.10, we can
argue analogously to before to see the statement holds. �
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For p a prime, as customary we denote by Op′(G) the smallest normal subgroup of G
with factor group of p′-order, that is, the normal subgroup generated by all p-elements.
The following will be useful toward proving Conjecture 1 for certain almost simple groups
(Theorem 2.17 below).

Lemma 2.15. Let p be a prime and let A be an almost simple group such that Op′(A) = A
with socle S a simple group of Lie type. Assume p ≥ 5 if S = D4(q). Assume that one of
the following holds:

(1) p is odd and IrrΩ(B0(S̃)) contains a p-rational character of degree divisible by p that
restricts irreducibly to S;

(2) p is odd and IrrΩ(B0(A ∩ S̃)) contains a p-rational character not invariant under A;

(3) IrrΩ(B0(A ∩ S̃)) contains a character of p′-degree not invariant under A.

Then there is a character in IrrΩ(B0(A)) of degree divisible by p.

Proof. Since Op′(A) = A and either D is abelian or S = D4(q) and D is S3 o C with

C cyclic, we have A/(A ∩ S̃) ∼= AS̃/S̃ is a p-group. Then B0(AS̃) is the unique p-block

covering B0(S̃) and B0(A) is the unique block covering B0(A ∩ S̃).

(1) If IrrΩ(B0(S̃)) contains a p-rational character of degree divisible by p that restricts

irreducibly to S, then let ϕ be its restriction to A ∩ S̃. Then ϕ ∈ IrrΩ(B0(A ∩ S̃)) is
p-rational and has degree divisible by p. By [19, Thm 6.30], if p is odd then ϕ extends to
a unique p-rational character ϕ̂ of IA(ϕ), which is therefore in IrrΩ(B0(IA(ϕ))). Then the
induced character ϕ̂A has degree divisible by p and lies in IrrΩ(B0(A)).

(2) Now assume IrrΩ(B0(A∩ S̃)) contains a p-rational character ϕ not invariant under A.
Then [A : IA∩S̃(ϕ)] is a power of p. As before, if p is odd then ϕ has a unique p-rational
extension ϕ̂ to IA(ϕ), which must lie in B0(IA(ϕ)) and be Ω-invariant. Then ϕ̂A has
degree divisible by p and lies in IrrΩ(B0(A)).

(3) If instead ϕ ∈ Irrp′,Ω(B0(A ∩ S̃)) is not invariant under A, we may argue similarly,
using [36, Cors 6.2 and 6.4] in place of [19, Thm 6.30]. �

Remark 2.16. Note that if S = D4(q) and A/(A ∩ S̃) is a p-group, then the conclusion
of Lemma 2.15(1, 2) still holds when p = 3 and that of Lemma 2.15(3) when p ∈ {2, 3}.

2.4. Extension of Brauer’s height zero conjecture for almost simple groups.
The following is Conjecture 1 for certain almost simple groups. It will be used in the
proof of Theorem 3.

Theorem 2.17. Let A be an almost simple group such that Op′(A) = A. Then A has
abelian Sylow p-subgroups if and only if all the characters in IrrΩ(B0(A)) have p′-degree.

Proof. The “only if” direction follows from that direction of the ordinary height zero
conjecture, proved in [22]. For the converse, assume that A has non-abelian Sylow p-
subgroups. We claim that IrrΩ(B0(A)) contains a character with degree divisible by p.
Let S be the simple socle of A. We deal with the various possibilities for S in the
subsequent Propositions 2.18–2.21. �

Proposition 2.18. The conclusion of Theorem 2.17 holds for S not of Lie type.
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Proof. For S = An with n ≥ 5 the claim for p = 2 is shown in the proof of [29, Prop. 2.5].
For p > 2 the principal p-block of Sn contains a character χ of degree divisible by p
(if Sn has non-abelian Sylow p-subgroups) by Brauer’s height zero conjecture [30], and
this is rational. Furthermore, the constituents of its restriction to An are Ω-invariant and
still of degree divisible by p. If S is sporadic or the Tits simple group, it can be checked
with [43] that the only cases when |A| is divisible by p3 but A does not possess a rational
character in the principal p-block of degree divisible by p is when A = S = J1 with p = 2,
or S = ON with p = 3. But in either case, Sylow p-subgroups of A are abelian. �

For the groups of Lie type, as before, we write Aut(S) = S̃ oD. Since Op′(A) = A, it
follows that any field automorphism in A has p-power order, and further any graph-field
automorphism in A has p-power order except possibly if S = D4(q).

Proposition 2.19. The conclusion of Theorem 2.17 holds for S of Lie type in character-
istic p.

Proof. Assume S is simple of Lie type defined in characteristic p. Recall again that
Irr(B0(S)) = Irr(S) \ {StS}. If S = 2F4(q2) or 2B2(q2) with q2 = 22m+1 and p = 2, then
the condition Op′(A) = A means that A = S. In the case of S = 2F4(q2), there is a unique
unipotent character of degree q2(q4−q2 +1)(q8−q4 +1), which is therefore rational-valued
and has even degree. When S = 2B2(q2), there are two cuspidal unipotent characters of
even degree, which take values in Q(

√
−1), and therefore are Ω-stable since p = 2.

Next suppose S = 2G2(q2) with q = 32m+1 and p = 3. Then Out(S) is cyclic of size
2m+ 1, comprised of field automorphisms. So Op′(A) = A means A/S must be a 3-group
and B0(A) is the unique block lying above B0(S). In this case, the unique character χ
of degree q2(q4 − q2 + 1) has degree divisible by p and must be rational and invariant
under A. Then we are done by Lemma 2.15(1).

Next, let S = PSL2(q) with q = pf . Here Sylow p-subgroups of A are abelian un-
less A induces field automorphisms of order p, thus p|f . Let r be a prime divisor of
(p2f − 1)/(p2f/p − 1), s ∈ SL2(q) an element of order r and χ ∈ Irr(PGL2(q)) the cor-
responding (semisimple) Deligne–Lusztig character. By construction, χ is of p′-degree,
but not invariant under any non-trivial subgroup of A (as s is not in any proper subfield
subgroup). Thus χA∩S̃ induces to an irreducible character ϕ̂ of A, of degree divisible
by p. If r 6≡ 1 (mod p) then χ and hence χ̂ are Ω-invariant. If p|(r − 1), then the
field automorphism in A of order p fuses χ with its images under Ω, and again χA is
Ω-invariant.

Next, consider the case S = PSL3(εq) with q = pf . Here S̃ = PGL3(εq). If p is

odd, the unique unipotent character in Irr(S̃) \ {1S̃, StS̃} has degree divisible by p, lies in

B0(S̃), and is rational-valued, so we are done by Lemma 2.15. Assume p = 2 so q = 2f .

Then the unipotent character of S̃ := PGL3(q) of degree q(q + 1) restricts irreducibly to

S = PSL3(q), lies in B0(S̃), has even degree, and extends to a character of AS̃ whose
values lie in Q(

√
q) ≤ Q8, by Lemmas 2.10 and 2.11, and so is Ω-invariant. This character

restricts to an even-degree character in IrrΩ(B0(A)).

Now, let S = PSU3(q) with q = 2f and p = 2. Observe that A/(A ∩ S̃) is cyclic. If

A ≤ S̃ then A = S and the unipotent character ϕ of degree q(q − 1) is as claimed. If

A 6≤ S̃ then A induces a graph-field automorphism. First, suppose that A/(A ∩ S̃) has
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order 2, so is generated by F f
2 . By [8, Thm 1], the cuspidal unipotent character ϕ extends

to a character ϕ̂ of A with field of values Q(
√
−q). Note that this is again Ω-invariant for

p = 2. Then we may assume that |A/(A ∩ S̃)| ≥ 4, and hence that A contains γ := F
f/2
2 .

Consider s ∈ SU3(q) = [GU3(q),GU3(q)] with eigenvalues {ζ, ζ−1, 1} where |ζ| 6= 3 is a
prime-power divisor of q + 1. (Recall that q 6= 2 since S is simple.) Then the semisimple
character χs of GU3(q) has odd degree, is 2-rational since |s| is odd, and is trivial on
the centre. Further, each element of Ω maps ζ to ζ±1, so χs is Ω-invariant. Then we

view χs ∈ IrrΩ(B0(S̃)). Now, since |ζ| | (q + 1), we have ζ2f/2 6∈ {ζ, ζ−1}. In particular,

χs is not γ-invariant. Further, χγs 6= χsα for any α ∈ Irr(S̃/S) and χs 6= χsα for any

1 6= α ∈ Irr(S̃/S), as otherwise sγz, respectively sz, would be conjugate to s for some
z ∈ Z(GU3(q)) by [10, Prop. 2.5.20] and [41, Prop. 7.2], contradicting our assumptions
on |ζ|. Thus χs restricts to an irreducible, 2-rational, odd-degree character of IrrΩ(B0(S))
that is not A-invariant, and we are done with this case by Lemma 2.15(3).

Now suppose S = D4(q) with p ≤ 3 and q = pf . Let χ be one of the unipotent characters

of S̃ listed in [10, Thm 4.5.11(b)]: this character lies in the principal series, has degree
divisible by p, and IAut(S)(χ) contains all field automorphisms, but does not contain the

triality graph automorphism. Then IAut(S)(χ)/S̃ is a subgroup of 〈τ〉 × 〈F0〉 = C2 × Cf ,
where τ is a graph automorphism of order 2 and F0 is a field automorphism of order f .

Note that our assumption Op′(A) = A means that A/(A∩ S̃) is a subgroup of 〈τ〉×〈Fm
0 〉,

where m = fp′ . By Lemmas 2.10 and 2.11, χ extends to a rational character χ1 of S̃〈τ〉
and to a rational character χ2 of S̃〈Fm

0 〉. Since both possible choices of χ1 must therefore

be rational, we may assume χ1 ∈ Irr(B0(S̃〈τ〉)). Since Fm
0 has p-power order, we also

have χ2 ∈ Irr(B0(S̃〈Fm
0 〉)). Then taking the unique common extension of χ1 and χ2, we

see χ extends to a rational character of B0(IAS̃(χ)). Then the corresponding unipotent
character ϕ := χ|S of S extends to a rational character ϕ̂ of B0(IA(ϕ)). The induced
character ϕ̂A then also has degree divisible by p and is rational-valued. Further, by [34,
Cor. 6.2 and Thm 6.7], we have ϕ̂A ∈ Irr(B0(A)).

We may now assume that S is not a Suzuki or Ree group and not of types A1, A2,
2A2, nor D4 when p ≤ 3. In particular, A/(A ∩ S̃) is a p-group. Then the unipotent
character ϕ ∈ IrrΩ(B0(S)) exhibited in the proof of Theorem 2.14 restricts irreducibly

from a member of IrrΩ(B0(S̃)) and has degree divisible by p. Further, note IA(ϕ) contains

A ∩ S̃. Then the extension ϕ̂ ∈ IrrΩ(B0(IA(ϕ))) from Theorem 2.14 has degree divisible
by p and the induced character ϕ̂A lies in IrrΩ(B0(A)) and has degree divisible by p, as
required. �

Proposition 2.20. The conclusion of Theorem 2.17 holds for S of Lie type in charac-
teristic not p when Sylow p-subgroups of S are abelian or when p = 3 and S = PSL3(εq)
with q ≡ ε (mod 3).

Proof. In these cases, we will see that the characters with positive height in B0(A) con-
structed in [27, Props 3.10 and 3.11] will satisfy our conditions.

Let G be of simply connected type such that S = G/Z(G) with G = GF . We may also

identify S̃ with GF
ad, with Gad the corresponding group of adjoint type.
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First, assume that p ≥ 5. In this case, since Sylow p-subgroups of S are abelian, we
have |Z(G)| is not divisible by p (see e.g. [26, Sec. 2.1]). In [27, Prop. 3.11], a character
of Irr(B0(A)) is constructed with height 1. This is done by constructing a semisimple
character χs ∈ Irrp′(B0(G)) trivial on Z(G) and indexed by a p-element s ∈ G∗ that is
not invariant under A. Since |s| is a power of p and hence relatively prime to |Z(G)|, as
in the proof of Lemma 2.4 we have χs is the unique semisimple character in its Lusztig

series and, as an element of Irr(S), is the restriction of a semisimple character χ̃s̃ of S̃
with |s̃| also of p-power order. Then we have χ̃σs̃ = χ̃s̃ for any σ ∈ Ω, since such σ stabilize
pth roots of unity. Then we are done by Lemma 2.15(3).

If p = 2, then S = PSL2(q) with q ≡ ε3 (mod 8) for ε ∈ {±1}, whose group of field

automorphisms has odd order. Then A = S̃ = PGL2(q), and again the character of A
discussed in [27, Prop. 3.11], labelled by an element of order 4, with even degree q + ε,
lies in IrrΩ(B0(A)).

Now let p = 3; then our assumption S has abelian Sylow 3-subgroups forces S =
PSL2(q) or PSL3(εq) with ε ∈ {±1}.

Assume first that S = PSL3(εq) with q ≡ −ε (mod 3) or S = PSL2(q). Here S has cyclic
Sylow 3-subgroups. Since by assumption A contains field automorphisms of 3-power order,
we have q = q3

0 for q0 some power of the defining characteristic, and we may consider the
field automorphism Fq0 to lie in A. Let ζ ∈ F×q2 be a 3-element of order dividing (q2− 1)3

but not (q2
0 − 1)3. Let χ̃ be the semisimple character of S̃ corresponding to a semisimple

element s ∈ SL3(εq), resp. SL2(q) with eigenvalues {ζ, ζ−1, 1}, resp. {ζ, ζ−1}. Then χ̃|S
is irreducible and χ̃ is not fixed by Fq0 , and hence is not stable under A. However, this
character is stable under Ω, since any σ ∈ Ω fixes 3-power roots of unity. Since χ̃ lies in

B0(S̃) by [16, Cor. 3.4], we are done in this case by Lemma 2.15(3).
Now let S = PSL3(εq) with q ≡ ε (mod 3). Here again we use the same characters in

[27, Props 3.10, 3.11]. In this case, A/S is a 3-group. First, assume A contains non-field
automorphisms. Note that the three characters of 3′-degree 1

3
(q + ε)(q2 + εq + 1) of S

take values in Q3 and hence are Ω-invariant. Further, it is shown in [27, Prop. 3.10] that
[A : IA(χ)] = 3 if χ is one of these characters. Then by the same arguments in Lemma
2.15(3), there is a character of degree divisible by 3 in IrrΩ(B0(A)).

So now assume that A contains only field automorphisms. Again the proof of [27,
Prop. 3.10] yields a semisimple character χ := χs ∈ Irr(B0(S)), for s a 3-element, that
has degree divisible by 3, is invariant under A, and restricts irreducibly from a semisimple

character χ̃ of S̃. Then χ and χ̃ are Ω-invariant as before. By [38, Prop. 6.7] and its

proof, χ̃ extends to an Ω-invariant character of S̃A, since A is generated by S and field
automorphisms. (Indeed, note that letting A = S〈F ′〉 for a field automorphism F ′ of
3-power order, the second paragraph of the proof of [38, Thm. 7.4] yields that we may
apply the proof of [38, Prop. 6.7] to each σ ∈ Ω. While our Ω is not in the group H there,
since χ̃ is indexed by a semisimple 3-element, and therefore stable under Ω, we may still
apply the arguments there with xσ = σt̃−1 in the notation of loc. cit.) Then χ extends
to an Ω-invariant character χ̂ of A. Since A/S is a 3-group, B0(A) is the unique 3-block
above B0(S), and therefore χ̂ is a character with degree divisible by 3 in IrrΩ(B0(A)), as
desired. �
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Proposition 2.21. The conclusion of Theorem 2.17 holds for S of Lie type in character-
istic not p when Sylow p-subgroups of S are non-abelian.

Proof. Let S be of Lie type in characteristic r 6= p. Notice that when p ≥ 5, or when

p = 3 and S is not of type D4, we will be done by Lemma 2.15(1) if B0(S̃) contains a
rational unipotent character of degree divisible by p, since unipotent characters restrict
irreducibly to S.

If p ≥ 5, then by the first paragraph of the proof of [23, Thm 2.18] there exists a

unipotent character χ ∈ Irr(B0(S̃)) of degree divisible by p. By [23, Lemma 2.8] this
continues to hold when p = 3 except when S = PSL3(εq) with q ≡ ε (mod 3). However,
we may assume S is not the latter case, by Proposition 2.20. If S is of classical type,
χ is rational, see [10, Cor. 4.4.24]. If S is of exceptional type, by our assumption on p we
either have p = 3, or p = 5 and S is of type E, or p = 7 and S = E8(q). Assume p = 3.
Here,

ρ′2, φ9,2, φ81,6, φ
′
9,6, φ27,2, φ567,6

are rational unipotent characters in B0(S) of degree divisible by 3 for

S = 2F4(q2), F4(q), E6(q), 2E6(q), E7(q), E8(q)

respectively, by [9] and [10, Cor. 4.5.6], and

G2[1], φ2,1,
3D4[1], φ2,2

are such rational unipotent characters for G2(q) with q ≡ 1,−1 (mod 3), 3D4(q) with
q ≡ 1,−1 (mod 3) respectively. Similarly, for the primes p = 5, 7 an inspection of the
tables in [3, 13.9] and [9] shows the existence of a rational unipotent character as desired.

If S = D4(q) and p = 3, the same unipotent character χ of S̃ considered above in the
case of defining characteristic has degree divisible by 3 in this case. Further, choosing χ

more specifically with symbol
(

2
2

)
, we see this character lies in B0(S̃), since the 1-core

and 1-cocore of this symbol are both trivial in this case. Then the same considerations
as above yield a rational character in Irr(B0(A)) of degree divisible by p above ϕ := χ|S.
This completes the proof when p ≥ 3.

Finally, assume p = 2. The Ree groups 2G2(q2) have abelian Sylow 2-subgroups so do
not occur here. Consider the case S = G2(3n) with n ≥ 1, so that Aut(S) contains an
exceptional graph automorphism τ , and suppose that A contains τF1 for some (possibly
trivial) field automorphism F1. Then the character χ = φ′1,3 in the notation of [3, Sec. 13.9]
has odd degree, is rational-valued by [10, Cor. 4.5.6], lies in B0(S) by [9, Thm A], and is
fixed by the field automorphisms but not by τ by [25, Thm 2.5]. Then A 6= IA(χ), and
by Lemma 2.15(3), our statement holds in this case. Then we may assume that A/S is
comprised of field automorphisms in the case that S = G2(3n).

Now, assume for the moment that S 6= PSL2(q),PSL3(εq). Let χ be a rational-valued,
principal series unipotent character in B0(S) with even degree guaranteed by Proposi-
tion 2.13. In the case that S = PSLn(εq) with n ≥ 4, let λ be the partition (n − 2, 2) if
n ≡ 0, 3 (mod 4) and λ = (n− 2, 12) if n ≡ 1, 2 (mod 4). Then taking χ more specifically
to be the character indexed by λ, we have χ is such a character using the degree formula
in [10, Prop. 4.3.2], but also does not satisfy the condition in Lemma 2.10. Then in all
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relevant cases, χ extends to a rational-valued character of S̃〈τ〉 if τ is a non-trivial graph
automorphism stabilizing χ, by Lemma 2.10.

If A/(A ∩ S̃) is abelian, note that it must be a 2-group, using our assumption that
O2′(A) = A. Then arguing as before, with Lemmas 2.10 and 2.11 and unique common
extensions, we obtain an extension ϕ̂ of ϕ := χ|S in IrrΩ(B0(IA(ϕ))). Again applying [34,
Cor. 6.2 and Thm 6.7], we have ϕ̂A ∈ IrrΩ(B0(A)) with even degree.

Next, we assume that A/(A∩ S̃) is non-abelian, so S = D4(q). We choose χ in this case
to be the unique (unipotent) character of degree q(q2 +1)2, so that χ extends to a rational
character of Aut(S) by the second paragraph of [42, Sec. 4.5], To find a character in B0(A),

note that A/(A∩ S̃) ≤ X := S3×〈Fm
0 〉, where F0 is a field automorphism of order f and

f2′ = m, for q = rf . Since every character of X is Ω-invariant (as the characters of S3

are rational and Ω stabilizes 2-power roots of unity), it follows by Gallagher’s theorem
that every character of A lying above χ′ := χA∩S̃ is Ω-invariant. In particular, we know
that there is a character above χ′ in B0(A), which therefore has even degree and lies in
IrrΩ(B0(A)).

It remains to discuss the groups PSL2(q) and PSL3(εq). First, let S = PSL2(q). Since
Sylow 2-subgroups of S are non-abelian by assumption, we have q ≡ ±1 (mod 8). Here

A/(A ∩ S̃) is generated by field automorphisms of 2-power order. Let s ∈ SL2(q) be a 2-
element of maximal 2-power order. Then the corresponding Deligne–Lusztig character χ

of S̃ = PGL2(q) of degree q±1 has values in Q2f for some f ≥ 1, is not invariant under any
field automorphism of 2-power order, and it restricts irreducibly to S. Thus its irreducible
induction to A is as required.

Finally, let S = PSL3(εq) with q 6≡ ε (mod 3) odd, and continue to assume p = 2. In
the first paragraph of [29, Prop. 2.12], a character ψ ∈ IrrΩ(B0(S)) is constructed such

that IAut(S)(ψ) = S̃ and ψ = χS for a semisimple χ ∈ IrrΩ(B0(S̃)) with even degree
corresponding to a suitable 2-element. (We note that, although only a specific σ ∈ Ω is
considered there, χ is Ω-stable for the same reason — that any such Galois automorphism
fixes 2-power roots of unity). Then as in loc. cit., the induced character (χS̃∩A)A satisfies
our statement. �

3. The Galois Itô–Michler theorem

In this section we prove Theorem 4. We will use the Alperin–Dade character corre-
spondence.

Lemma 3.1. Suppose that N is a normal subgroup of G, with G/N a p′-group. Let
P ∈ Sylp(G) and assume that G = NCG(P ). Then restriction of characters defines a
natural bijection between the irreducible characters of the principal p-blocks of G and N .
In particular restriction defines a bijection

res : IrrΩ(B0(G))→ IrrΩ(B0(N)).

Proof. The case where G/N is solvable was proved in [1] and the general case in [5]. We
prove the last assertion. It is clear that if χ ∈ IrrΩ(B0(G)), then χN ∈ IrrΩ(B0(N)).
Conversely, let θ ∈ IrrΩ(B0(N)) and let χ ∈ Irr(B0(G)) such that χN = θ. Let τ ∈ Ω.
Then, since τ acts on Irr(B0(G)), we have χτ ∈ Irr(B0(G)) and (χτ )N = θτ = θ = χN .
We conclude that χ = χτ . Hence χ ∈ IrrΩ(B0(G)), as wanted. �
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If N E G and θ ∈ Irr(N), we denote by Irr(G|θ) the set of irreducible characters of G
lying over θ, and by cd(G|θ) the set of degrees of the characters in Irr(G|θ).

Lemma 3.2. Suppose that N is a normal subgroup of G, with G/N a p′-group. Let
Ω = Ω(|G|). If θ ∈ IrrΩ(N) then there exists χ ∈ IrrΩ(G) over θ. Furthermore, if
θ ∈ IrrΩ(B0(N)) then there exists χ ∈ IrrΩ(B0(G)) over θ.

Proof. We argue by induction on |G : N |. Suppose that Gθ < G. By the inductive hy-
pothesis there exists ψ ∈ IrrΩ(Gθ|θ). By Clifford’s correspondence, χ = ψG is irreducible
and by the formula for the induced character Q(χ) ⊆ Q(ψ) so χ is Ω-invariant. Moreover,
if ψ ∈ Irr(B0(Gθ)), then χ ∈ Irr(B0(G)) by [34, Cor. 6.2 and Thm 6.7]. Hence, we may
assume that θ is G-invariant in both statements.

For d ≥ 1 set Irrd(G|θ) := {χ ∈ Irr(G|θ) | χ(1) = d}. Since θ is Ω-invariant, Ω acts on
Irrd(G|θ) for every d. Since

|G : N | =
∑

χ∈Irr(G|θ)

(
χ(1)

θ(1)

)2

=
∑
d

|Irrd(G|θ)|
d2

θ(1)2

is a p′-number, we conclude that there exists d ∈ cd(G|θ) such that |Irrd(G|θ)| is not
divisible by p. Since |Ω| is a power of p, it follows that there exists χ ∈ Irrd(G|θ) that is
Ω-invariant.

Now assume that θ ∈ IrrΩ(B0(N)). If G/N is not simple, let M E G with N < M < G.
By induction there is ψ ∈ IrrΩ(B0(M)) lying over θ. Again by induction, there is χ ∈
IrrΩ(B0(G)) lying over ψ (and hence over θ). Hence we may assume that G/N is simple.

Now, let P ∈ Sylp(G) and notice that P ≤ N . By the Frattini argument, G = NNG(P )
and hence M := NCG(P ) E G. Since G/N is simple we have that M = N or M = G. If
M = G, by Lemma 3.1 there exists χ ∈ IrrΩ(B0(G)) such that χN = θ, and we are done.
Hence we may assume that M = N . In this case, CG(P ) ≤ N and by [27, Lemma 4.2] we
have that B0(G) is the only block covering B0(N). By the first part of the proof, there is
χ ∈ IrrΩ(G|θ), hence χ ∈ IrrΩ(B0(G)|θ) and we are done. �

The following is the p-group case of Theorem 4.

Lemma 3.3. Let p be a prime number and let P be a p-group. Then

Irr(P ) = IrrΩ(P ).

Proof. By the definition of Ω, every τ ∈ Ω fixes the p-power roots of unity, so the result
is clear. �

We need the following technical lemma.

Lemma 3.4. Let p and q be distinct primes. Suppose that G = V P , where P > 1 is an
abelian p-group, V is an elementary abelian q-subgroup of G, minimal normal in G, and
CP (V ) = 1. Suppose that p divides q− 1. Then there exists χ ∈ Irr(G) of degree divisible
by p such that Q(χ) ⊆ Qq and p divides |Qq : Q(χ)|.

Proof. Since V is a faithful irreducible P -module, and CV (x) E G for every x ∈ P , we
have that CV (x) = 1 for every 1 6= x ∈ P . Thus G is a Frobenius group with abelian
complement P . Let h ∈ P be an element of order p and put H = 〈h〉.
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Now, write V = V1⊕ · · ·⊕Vt as a direct sum of irreducible H-modules. Since p divides
q− 1, the field Fq contains primitive pth roots of unity, so all irreducible H-modules have
dimension 1. Since CP (V ) = 1, there exists i and λ ∈ Irr(Vi) that is not H-invariant
by [32, Prop. 12.1]. Write V = U ⊕W , so that U = Vi and W E V H. We view λ as
a character of V/W (hence of V ) that induces irreducibly to µ = λV H ∈ Irr(V H). Let
U = 〈v〉, so that λ(v) = ε for some primitive qth root of unity ε (note that since λ is not

H-invariant λ(v) 6= 1). Since H does not act trivially on U , vh
−1

= vi for some i that has
order p modulo q. Let τ ∈ Gal(Qq/Q) be the Galois automorphism such that τ(ε) = εi,
so that λh(v) = λ(v)τ . Note that τ has order p since τ p(ε) = εi

p
= ε. Note that

µV =

p−1∑
j=0

λg
j

so that
µ(v) = ε+ εi + · · ·+ εi

p−1

= ε+ ετ + · · ·+ ετ
p−1

= µτ (v).

Thus µ is τ -invariant and hence Q(µ) is τ -invariant, that is, τ ∈ Gal(Qq/Q(µ)). Since τ
has order p, the fundamental theorem of Galois theory implies that |Qq : Q(µ)| is divisible
by p.

Since G is a Frobenius group, χ = λG ∈ Irr(G) (so p divides χ(1)). Note that Q(χ) =
Q(χV ) (because χ vanishes off V ). By Clifford’s theorem, χV H is a sum of conjugates
of µ. Therefore,

Q(χ) = Q(χV H) ⊆ Q(µ).

It follows that |Qq : Q(χ)| is divisible by p, as wanted. �

Given a group G, we write Op(G) to denote the largest normal p-subgroup of G. Anal-
ogously Op′(G) is the largest normal p′-subgroup of G. The following is Theorem 4:

Theorem 3.5. Suppose that G does not have composition factors isomorphic to S with
(S, p) one of the pairs listed in Theorem 2.8. Then all characters in IrrΩ(G) have p′-degree
if and only if G has a normal abelian Sylow p-subgroup.

Proof. The “if” direction is clear, so we prove the “only if” direction. Let P be a Sylow
p-subgroup of G.

Step 1. If P is normal in G, then P is abelian.

Let θ ∈ Irr(P ). By Lemma 3.3 we have that θ ∈ IrrΩ(P ). By Lemma 3.2, there exists
χ ∈ IrrΩ(G) over θ. By hypothesis, χ has p′-degree. Since χ(1) is a multiple of θ(1), this
implies that θ(1) is p′ and hence θ is linear. Thus P is abelian.

In the following we want to prove that P is normal in G. Let G be a minimal coun-
terexample.

Step 2. If 1 < N E G, G/N has normal and abelian Sylow p-subgroups. In particular,
there is a unique minimal normal subgroup of G and Op(G) = 1.

Since IrrΩ(G/N) ⊆ IrrΩ(G), the hypothesis is inherited by G/N . By the minimality
of G as a counterexample, G/N has a normal and abelian Sylow p-subgroup. Now, if M,N
are distinct minimal normal subgroups, G is isomorphic to a subgroup of G/N×G/M , and
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hence G has a normal and abelian Sylow subgroup, as wanted. Finally, if 1 < N = Op(G),
P/N is normal in G, so P is normal in G, and we are done.

Step 3: We have that G = Op′(G). In particular, if N is the unique minimal normal
subgroup of G, then G = PN .

Let L = Op′(G). Suppose that L < G. Let θ ∈ IrrΩ(L). By Lemma 3.2, there exists
χ ∈ IrrΩ(G) over θ. By hypothesis, χ(1) is p′. We conclude that all characters in IrrΩ(L)
have p′-degree. By induction, L has a normal Sylow p-subgroup and hence the same holds
for G. Thus, we may assume that G = Op′(G). By Step 2, PN/N is normal in G/N , so
PN is normal in G, which forces G = PN .

Step 4: Let N be the unique minimal normal subgroup of G. Then N is a direct product
of non-abelian simple groups.

Suppose that N is elementary abelian. By Step 2, N is a q-group for some prime q 6= p
and by Step 3, G = PN . Notice that P ∼= G/N is abelian by Step 2. Then CP (N)
is normal in G, so CP (N) = 1 again by Step 2. Note that Ω(|G|) is cyclic. If p does
not divide q − 1 then Ω is trivial and we finish the proof using the Itô–Michler theorem.
Hence, we may assume that p divides q− 1, so that Ω is cyclic of order p. By Lemma 3.4,
there exists χ ∈ Irr(G) of degree divisible by p and such that p divides |Qq : Q(χ)|. Then
there is τ ∈ Gal(Qq/Q(χ)) of order p. It follows that Ω is generated by an extension of τ ,
whence χ ∈ IrrΩ(G) has degree divisible by p, a contradiction.

Step 5: Completion of the proof.

Let N be the unique minimal normal subgroup of G. By Step 4, we know that N
is a direct product of isomorphic non-abelian simple groups. Write N = S1 × · · · × St,
where Si ∼= S is non-abelian simple. By Theorem 2.8, we may assume that t > 1. Write
H =

⋂t
i=1 NG(Si) so that G/H is isomorphic to a transitive permutation group on t

letters and N ≤ H ≤ Aut(S) × · · · × Aut(S). By Step 2 and Step 3, G/H is an abelian
p-group. Therefore, all point stabilizers are trivial.

By Theorem 2.14, there exists 1S 6= ϕ ∈ Irr(S) that extends to an Ω-invariant character
of its inertia group in Aut(S)p, where Aut(S)p/S is a Sylow p-subgroup of Aut(S)/S.
Since Gν ≤ H, ν = ϕ × 1S × · · · × 1S extends to an Ω-invariant character ν̃ of Gν < G
(using also Step 3). Hence, since G/H 6= 1, ν̃G ∈ Irr(G) has degree divisible by p and is
Ω-invariant. This contradicts the hypothesis. �

The following is the p-solvable case of Theorem 3.

Corollary 3.6. Let p be a prime. Let G be p-solvable and let P ∈ Sylp(G). Then all
characters in IrrΩ(B0(G)) have height zero if and only if P is abelian.

Proof. Since G is p-solvable, Irr(B0(G)) = Irr(G/Op′(G)). Now, the result follows from
Theorem 3.5 and Hall–Higman’s Lemma 1.2.3. �

Remark 3.7. We remark that if p is odd, our arguments can be adapted to show that
we can replace Ω by P = {σ ∈ Gal(Q|G|/Q) | o(σ) = p} in Theorem 3.5 and Corollary 3.6
(using that the field of values of an irreducible character of an odd order p-group is a
full cyclotomic field). This is not possible, however, in Theorem 3. Fix p = 3 and let
G = X ?Y be the central product of a cyclic group X of order 9 and the 3-fold cover Y of
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the alternating group on 6 letters. Note that G does not have abelian Sylow 3-subgroups.
We claim that every character in IrrP(B0(G)) has 3′-degree. We can check in [4] that every
character of degree divisible by 3 of B0(Y ) has field of values of 2-power degree. Hence,
all of these characters are invariant under a Sylow 3-subgroup of the Galois group. Hence,
B0(G) = B0(X) ? B0(Y ) (see [29, Lemma 4.1]) does not have P-invariant characters of
degree divisible by 3, as claimed.

We conclude this section with a theorem that generalizes results of Dolfi–Navarro–Tiep
[7, Thm A], who consider the case that σ is complex conjugation, as well as the p = 2
case of Grittini [14, Thm A], which considers the same statement for p-solvable groups
(there for an arbitrary prime p). This is also part of [15, Thm A].

Theorem 3.8. Let σ ∈ Gal(Qn/Q) have order 2 and let G be a finite group of order
dividing n. If every χ ∈ Irr(G) fixed by σ has odd degree, then G has a normal Sylow
2-subgroup.

Proof. We proceed by induction on |G|. Using [14, Prop. 2.3] and following Steps 1–2 of
the proof of [14, Thm A], we see that we may assume G = O2′(G) = NP , where N is the
unique minimal normal subgroup of G and P is a Sylow 2-subgroup of G.

Suppose first that N is abelian. Then the result follows from [14, Thm A].
Hence, we assume that N = Sx1×· · ·×Sxt is the product of conjugates of a non-abelian

simple subgroup S and let H := NG(S)/CG(S). Now, by [42, Thm C] and Theorem 2.8,
there is a σ-invariant character χ ∈ Irr(H) of even degree, and such that there is some
non-trivial θ ∈ Irr(S) lying under χ. From here, we argue exactly as in the proof of [7,
Thm A]. Namely, taking η := θ × 1Sx2 × · · · × 1Sxt ∈ Irr(N) we have IG(η) ≤ H. Since χ
(now viewed as the inflation to NG(S)) lies over η, we obtain that the induced character
χG is a σ-invariant, irreducible character of even degree, a contradiction. �

4. The Galois height zero conjecture

We assume that the reader is familiar with the basic properties of the generalized Fitting
subgroup F∗(G) (see e.g. [20, Sec. 9A]). We write E(G) to denote the layer of G and F(G)
to denote the Fitting subgroup of G.

Now, we prove Theorem 2 and Theorem 3. We handle both of them simultaneously.

Theorem 4.1. Let G be a finite group, let p be a prime number and let P ∈ Sylp(G).
Suppose that G does not have composition factors isomorphic to S with (S, p) one of the
pairs listed in Theorem 2.8. Then all characters in IrrΩ(B0(G)) have height zero if and
only if P is abelian.

Proof. The “if” part follows from the “if” part of Brauer’s height zero conjecture, proved
in [22]. We prove the “only if” part. Let P be a Sylow p-subgroup of G. We want to see
that P is abelian. Let G be a minimal counterexample.

Step 1: We have that Op′(G) = 1. Furthermore, for every 1 < N E G, G/N has abelian
Sylow p-subgroups and G has a unique minimal normal subgroup.

Put M = Op′(G) and assume that M > 1. Since IrrΩ(B0(G/M)) ⊆ IrrΩ(B0(G)), all the
characters in IrrΩ(B0(G/M)) have p′-degree. By the minimality of G as a counterexample,
G/M and henceG, have abelian Sylow p-subgroups. The second part is analogous. For the
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last part, suppose that N,M are minimal normal subgroups of G. Then G is isomorphic
to a subgroup of G/N ×G/M and the conclusion holds.

Step 2: We have that G = Op′(G).

Write M = Op′(G) and assume that M < G. Let ψ ∈ IrrΩ(B0(M)). By Lemma 3.2,
there exists χ ∈ IrrΩ(B0(G)) over ψ of p′-degree. Hence ψ has p′-degree. By the minimality
hypothesis M has abelian Sylow p-subgroups and hence the same holds for G.

In the following, let N be the unique minimal normal subgroup of G. Set K/N =
Op′(G/N), so that by Step 1, Step 2 and [27, Thm 4.1], G/K = X/K×Y/K, where X/K
is an abelian p-group and Y/K is a direct product of non-abelian simple groups of order
divisible by p with abelian Sylow p-subgroups.

We first consider the case when N is an elementary abelian p-group. If Y = K, G is p-
solvable, so it has just one p-block by Step 1. In this case the result holds by Corollary 3.6.
So we may assume that Y > K.

Step 3: Let M = CG(N). Then G/M is an abelian p-group.

Let Q be a Sylow p-subgroup of M , so that CG(Q) ⊆ CG(N) = M (note that since N
is a normal p-subgroup of M , N ⊆ Q). By [27, Lemma 4.2], Irr(G/M) ⊆ Irr(B0(G)), so
IrrΩ(G/M) ⊆ IrrΩ(B0(G)). By hypothesis, this implies that all characters in IrrΩ(G/M)
have p′-degree, then by Theorem 3.5 and Step 2 we obtain that G/M = PM/M is abelian.

Step 4: We have that K > N .

Suppose that K = N , so G/N = X/N × Y/N = X/N × S1/N × · · · × St/N , where
Si/N is non-abelian simple of order divisible by p for every i = 1, . . . , t. Now, X ≥ N
is a p-group, so 1 < Z(X) C G and then N ⊆ Z(X). Hence X ⊆ CG(N) = M . Since
G/X ∼= Y/N does not have normal subgroups of p-power index, we necessarily have that
M = G. Then N ⊆ Z(G) and |N | = p. Now G is the central product of X with S1, . . . , St,
where Y/N ∼= S1/N × · · · × St/N . Since N is the unique minimal normal subgroup of G,
N ⊆ S ′i. Hence all Si are perfect, so Si is quasi-simple with centre N , for every i. Let
1N 6= λ ∈ Irr(N). By Theorem 2.9 there exists ψi ∈ IrrΩ(|Si|)(B0(Si)) = IrrΩ(B0(Si)) lying
over λ. (If necessary, replacing ψi by a Galois conjugate.) Now, let ξ ∈ Irr(X|λ), then
ξ ∈ IrrΩ(B0(X)|λ). By [29, Lemma 4.1] the central product of characters

χ = ξ ? ψ1 ? ψ2 ? · · · ? ψt
lies in the principal block of G. Hence χ ∈ IrrΩ(B0(G)) has degree divisible by p, which
contradicts the assumption K = N .

Step 5: We have that F(G) = F∗(G).

In this step we use arguments from the proof of Theorem 4.6 of [27]. By Step 1 and
the assumption that N is abelian, F = F(G) = Op(G) > 1. Suppose that E = E(G) > 1
and let Z = Z(E). Since N is the unique minimal normal subgroup of G, N ⊆ Z (notice
that Z > 1 since otherwise F∗(G) = F(G) × E in contradiction to Step 1). We claim
that E/Z = S1/Z × · · · × Sn/Z, where Si E G for every i. Let W/Z be a non-abelian
chief factor of G/Z contained in E/Z. By the Schur–Zassenhaus theorem and Step 1, we
know that |W/Z| is divisible by p. Now, by [27, Thm 4.1] applied to G/Z, we have that
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W/Z is simple and the claim follows. Write S = S1, so that S ′ is a quasi-simple normal
subgroup of G. Using again that N is the unique minimal normal subgroup of G, we have
that N ⊆ Z(S) ∩ S ′ ⊆ Z(S ′). Looking at the Schur multipliers of the simple groups [4],
if p ≥ 5, we deduce that Z(S ′) has cyclic Sylow p-subgroups. Arguing as in Step 4 of the
proof of Theorem 4.6 of [27] we have that Z(S ′) has cyclic Sylow p-subgroups for p = 2, 3
as well.

In all cases, we conclude that N is cyclic and hence |N | = p. Now, the order of
G/CG(N) divides p − 1. By Step 2, G = CG(N), so N is central in G. Thus K is
the direct product of N and a p-complement H. Since H is normal in G, we have a
contradiction with Step 1. Hence E = 1 and F(G) = F∗(G) as wanted.

Step 6: We have that N = F(G) = F∗(G).

Let H be a p-complement of K, so K = HN and H ∩ N = 1. Then by the Frattini
argument and the Schur–Zassenhaus theorem, we have G = NNG(H). Write L = NG(H).
Now, since N is abelian and normal in G, NN(H) is normal in G = NNG(H) = NL,
and hence NN(H) = 1 or NN(H) = N . If NN(H) = N , then H C G, and we get a
contradiction since Op′(G) = 1 by Step 1. Thus, L ∩ N = NN(H) = 1 and L is a
complement of N in G.

Let F = F(G) = Op(G). We will show that F = N . Notice that since Z(F ) > 1, we
have N ⊆ Z(F ). Let F1 = F ∩ L. Then F1 C L and since G = NL, we have F1 C G.
Since N is the unique minimal normal subgroup, this forces F1 = 1, so F = N as wanted.
Since F(G) = F∗(G), the claim follows, and the proof of the Step is completed.

Step 7: Completion of the proof when N is elementary abelian.

Step 6 implies that CG(N) = N . By Step 3, G/N is a p-group, but then G is a p-group
and we are done since IrrΩ(B0(G)) = Irr(G) in this case (see Lemma 3.3).

Hence, from now on we may assume that N is a direct product of non-abelian simple
groups. Write N = S1 × · · · × St, where Si ∼= S is non-abelian simple. By Theorem 2.17,
we may assume t > 1. Write H =

⋂t
i=1 NG(S) so that G/H is isomorphic to a transitive

permutation group on t letters and N ≤ H ≤ Aut(S)× · · · × Aut(S).

Step 8: We have that CG(P ) ⊆ H. In particular, G/H is a non-trivial p-group and
G/N has a normal p-complement K/N .

Let R ∈ Sylp(S), so that Q = R × · · · × R ⊆ P is a Sylow p-subgroup of N . Since
Op′(G) = 1, R > 1. Let g ∈ G − H. Since g permutes the copies of S, we may assume
without loss of generality that g does not centralize (x, 1, . . . , 1), where 1 6= x ∈ R. The
first part follows.

Now, using [27, Lemma 4.2] we have IrrΩ(G/H) ⊆ IrrΩ(B0(G)). By hypothesis, p does
not divide the degree of any character in IrrΩ(G/H). It follows from Theorem 3.5 that
G/H has a normal abelian Sylow p-subgroup. Since Op′(G) = G, we conclude that G/H
is a (non-trivial) p-group, as desired.

Finally, we prove the third claim. Since H/N is isomorphic to a subgroup of Out(S)t,
it follows from Schreier’s conjecture that H/N is solvable. Since G/H is also solvable,
we conclude that G/N is solvable. By Step 1, G/N has abelian Sylow p-subgroups.
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Therefore, by Hall–Higman’s Lemma 1.2.3 applied to G/K and the fact that Op′(G) = G,
we conclude that G/N has a normal p-complement K/N .

Step 9: We have that G = NP .

In this step we follow the arguments from [29]. Let Q = P ∩ N ∈ Sylp(N). By the
Frattini argument, G = NNG(Q). Therefore, M = NCG(Q) E G. By [27, Lemma
4.2], all irreducible characters of G/M belong to B0(G). By Theorem 4, G/M has a
normal Sylow p-subgroup. Since Op′(G) = G, we conclude that G/M is a p-group. Hence
K ⊆M = NCG(Q). Therefore, K = NCK(Q).

Let α ∈ IrrΩ(B0(NP )). We want to show that α has p′-degree. Let θ ∈ Irr(N) under α,
so θ belongs to the principal p-block of N . By Alperin’s isomorphic blocks (Lemma 3.1),
there exists a unique extension η of θ in B0(K). Let I = Gη, so that J = I∩PN = (PN)θ
(using uniqueness in Alperin’s theorem). Let µ ∈ Irr(J) be the Clifford correspondent of
α over θ. By the Isaacs restriction correspondence ([36, Lemma 6.8]), let ρ ∈ Irr(I|η) be
such that ρJ = µ. By the Clifford correspondence, χ = ρG ∈ Irr(G) lies in the principal
p-block of G (because η does and G/K is a p-group). Now, let σ ∈ Ω. Since α is σ-
invariant, we have θσ = θgσ for some gσ ∈ P by Clifford’s theorem. By the uniqueness in
the Alperin–Dade correspondence we have that, ηgσ = ησ. By uniqueness in the Clifford
correspondence and the Isaacs correspondence we obtain that µσ = µgσ , ρσ = ρgσ and
χσ = χ. Since this occurs for every σ ∈ Ω, we conclude that χ ∈ IrrΩ(B0(G)). By
hypothesis, χ has p′-degree. Thus I = G, χ = ρ and χPN = α has p′-degree as wanted.
By the minimality of G as a counterexample, we may assume that G = NP , as claimed.

Step 10: Completion of the proof.

By Theorem 2.14, there exists 1S 6= ϕ ∈ IrrΩ(B0(S)) that extends to an Ω-invariant
character of the principal p-block of its inertia group in Aut(S)p, where Aut(S)p/S is a
Sylow p-subgroup of Aut(S)/S. Therefore, ν = ϕ × 1S × · · · × 1S ∈ Irr(B0(N)) extends
to an Ω-invariant character ν̃ of the principal p-block of Gν ⊆ H (using again that G/H
is an abelian transitive permutation group). Hence, ν̃G ∈ Irr(B0(G)) has degree divisible
by p and is Ω-invariant. This contradicts the hypothesis. �
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