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CLUSTER ALGEBRAS

1. Mutations and cluster algebras of geometric type

References: [Mar13, Chapters 2.1-2.3], [FZ02, Chapter 4], [Kel]
• Give the definitions of a seed, mutation of a seed and cluster algebra of geometric type.
• Provide examples.
• State the facts about skew-symmetric matrices (as in [Mar13, Chapter 2.2]) and give
at least the idea of the proofs as can be found in [FZ02, Chapter 4].

• Introduce the quiver notation and mutation of quivers. Provide examples of quiver
mutation using Keller’s quiver mutation applet [Kel].

2. Exchange pattern cluster algebras

Reference: [Mar13, Chapter 3]
• Define exchange patterns and exchange pattern cluster algebras.
• Give the characterization of exchange patterns by sign-skew-symmetric matrices [Mar13,
Proposition 3.3.4].

• Exchange patterns of geometric type.
• Describe the connection between cluster algebras of geometric type and exchange pat-
tern cluster algebras [Mar13, Theorem 3.3.9].

3. Reflection groups

Reference: [Mar13, Chapter 4]
• Shortly review the necessary background on reflection groups, (crystallographic) root
systems, Coxeter groups and the classification of finite reflection groups resp. Coxeter
groups [Mar13, Chapters 4.1-4.6, 4.9].

• reduced expressions, longest element, exponents, Coxeter elements, Theorem of Cheval-
ley [Mar13, Chapters 4.10+4.11].

4. Cluster algebras of finite type

Reference: [Mar13, Chapter 5], [BGZ06]
• Give the definitions of (strongly) isomorphic cluster algebras, cluster algebras of finite
type and Cartan counterpart [Mar13, Chapters 2.5+5.1].

• Define valued quiver [Mar13, Chapter 2.4].
• State the classification results for cluster algebras of finite type: [Mar13, Theorems
5.12 +5.13] and [BGZ06, Theorems 1.1+1.2] (the latter ones should be stated as one
theorem).

• State the bijection between almost positive roots and cluster variables [Mar13, Theo-
rem 5.3.1], Q-root cluster.

• [Mar13, Theorem 5.3.4]
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• State the formula for the number of seeds for a cluster algebra of Dynkin type [Mar13,
Chapter 5.6].

5. Cluster fan and cluster complex

Reference: [Mar13, Chapter 6]
• DefineQ-root cluster and provide the necessary background [Mar13, Chapters 5.4+5.5].
• Introduce the cluster fan, i.e [Mar13, Theorem 6.2.3] and the essential ideas and steps
of the proof.

• Introduce the cluster complex [Mar13, Chapter 6.3].

6. Generalized Associahedra

Reference: [Mar13, Chapter 6]
• State the theorem about the realization of the generalized associahedron via the cluster
fan of a Dynkin quiver [Mar13, Theorem 6.5.1].

• Provide background and examples: [Mar13, Chapter 6.6] and [FR07, Chapters 4.3-4.5].

7. The Laurent Phenomenon

References: [Mar13, Chapter 7], [FZ02, Chapter 3], [Lam13, Chapter 4]
The aim of this talk should be to state and proof the Laurent Phenomenon for cluster

algebras. A good reference for an accessible proof might be [Lam13].

8. Grassmannians

Reference: [Mar13, Chapter 9]
Show that the homogeneous coordinate ring of the Grassmannian of k-subspaces of an

n-dimensional space can be regarded as a cluster algebra.
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